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What is a Painlevé Equation?

d2
Painlevé equation: d—tz = 6y> +t, teC (P-I)
. : dy » d?y <dy)2
Not a Painlevé(-t, t : 3—y“ =1, —_— — =0
ot a Painlevé(-type) equations dty 32 + at

Singularity Structure of Solutions
° 3%3'2 =1 = y= {/t—c1 — movable branch point
° fT%, + (d%,) ’ =0 = y=log(t—c1)+ co — movable essential singularity point
e ?T)c’ =y? = y=—(t—c1)"! — movable pole

Differential Painlevé Equations

Painlevé equations are second-order algebraic differential equations satisfying the Painlevé
Property: the general solution of the equation is free of movable (i.e., dependent on the
constants of integration) critical points where it loses local single-valuedness (e.g., branch
points like v/x — ¢) — i.e., uniformizability of a general solution.
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Painlevé equations are second-order algebraic differential equations satisfying the Painlevé
Property: the general solution of the equation is free of movable (i.e., dependent on the
constants of integration) critical points where it loses local single-valuedness (e.g., branch
points like v/x — ¢) — i.e., uniformizability of a general solution.

e P. Painlevé, B. Gambier (1902-10) — Py,...,Pyr.

o R. Fuchs, L. Schlesinger, and R. Garnier (1907-12) — relationship to Isomonodromic
Deformations of Fuchsian systems.
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e Solution of y/ =y is the exponential function y(t) = y(0)e®.

e Solution of y”” = —y can be given as a linear combination of the basic trigonometric
functions, y(t) = y(0) cos(t) + y’(0) sin(t).
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Kummer functions, Hermite functions and Hermite polynomials, Bessel functions, Airy
functions, and many others.

All of the above examples are characterized by linear ODEs. Important features of the linear
case:

o The superposition principle.

@ The singularity structure of solutions is determined by the singularity structure of the

(coefficients of) the equation.

In particular, in the nonlinear case, singularities of solutions can depend on the IVP —
movable singularities.
In certain sense, the Painlevé property is an attempt to single out the equations that have a
meaningful notion of a general solution and the associated Riemann surface — integrability.

Anton Dzhamay (UNC) Discrete Painlevé Equations July 28, 2017 4 /61






n=1: L. Fuchs, H. Poincaré

dy 2 .
° (E) =4y® — gy — gs, g2,83 € C Weierstrass p(t|g2, g3)

d
° d—i = a(t)y” + b(t)y + c(t), (Riccati equation)



Classification Scheme for Painlevé Equations

n=1: L. Fuchs, H. Poincaré
° (%)2 = 4}’3 — 82y — 83, g2,83 €C Weierstrass p(t|gz2, g3)
° j—i] = a(t)y® + b(t)y + c(t), (Riccati equation)
n=2: P. Painlevé, B. Gambier — Painlevé equations and Painlevé transcendents:

d2y

(P-1) @:6y2+t;
d2
(P-1I) F;{=2y3+ty+o¢,
(P-TIT) dy _1(dy)? 1y Ly + 8+t + 2
) dt2 ~ y \dt tar Y WS
d?y 1 (dy\? 3 3 2 2 B
PIV) —2 =_— (=) 42 aty? + 2062 — a)y + =;
(P-IV) T 2y<dt> ¥ TAY H2AtT —ay+ 7
d’y 1 1 dy\? 1dy  (y—1)° B y Yy +1)
PV) —2 = (— /A A N +2) 442 g2
( ) dt2 2y+y—1><dt) tdt+ £2 (ay y) L y—1

d?y 1/1 1 1 dy\ 2 1 1 1 dy
PVI) —~==(-4+—4+— (=) - (z2+—+—)=
( )dtz 2 y+y71+y7t> <dt) <t+t71+y7t> dt+
y(yfl)(yft)< t t—1 t(t*1)>
A — byt ).
ee-nr \*TPETG T TG o

Anton Dzhamay (UNC) Discrete Painlevé Equations July 28, 2017 5/ 61



Classification Scheme for Painlevé Equations

n=1: L. Fuchs, H. Poincaré
° (%)2 = 4}’3 — 82y — 83, g2,83 €C Weierstrass p(t|gz2, g3)
° j—i] = a(t)y® + b(t)y + c(t), (Riccati equation)
n=2: P. Painlevé, B. Gambier — Painlevé equations and Painlevé transcendents:

d2y

(P-I) Tz = 6y2 + t; Painlevé equations have parameters!
d2
(P-1I) F;{ =2y% Lty + o
(P-TIT) dy _1(dy)? 1y Ly + 8+t + 2
) dt2 ~ y \dt tar Y WS
d’y 1 (dy\? 3 3 2 % B
PIv) —2 = — () 4593 paty? 422 —a)y + =
(P-IV) T 2y<dt> ¥ TAY H2AtT —ay+ 7
d?y 1 1 dy\? 1ldy (y-1)? B y Yy +1)
pv) <= (= pl I I A VS ) VA pA Al
( ) dt2 2y+y—1><dt) tdt+ £2 (ay y) L y—1

d?y 1/1 1 1 dy\ 2 1 1 1 dy
PVI) —~==(-4+—4+— (=) - (z2+—+—)=
( )dtz 2 y+y71+y7t> <dt) <t+t71+y7t> dt+
y(yfl)(yft)< t t—1 t(t*1)>
A — byt ).
ee-nr \*TPETG T TG o

Anton Dzhamay (UNC) Discrete Painlevé Equations July 28, 2017 5/ 61



Classification Scheme for Painlevé Equations

n=1: L. Fuchs, H. Poincaré

(

dy
dt
dy

dt

= a(t)y” + b(t)y + c(t),

(Riccati equation)

2
) =4y® — goy — g3, g2,83 €C Weierstrass p(t|g2, g3)

n=2: P. Painlevé, B. Gambier — Painlevé equations and Painlevé transcendents:

(P-1)

(P-II)

(P-I11)

(P-1V)

(P-V)

(P-VI)

d2y
de2
d2y
dtz

2 . . .
= 6y~ + t; Painlevé equations have parameters

d2y _
dt2

d%y
e
d?y

dt?

dzy
dt2

+ 4ty + 2(t2 — a)y + =;
y

dy
dt

1

Pvi — Py

7 ™
~ 7

Prv

P

Pip —> Pg

1 S
;(ay2 +8) +v° + 7

B

t dt (G2

2 2
) *lg+u<ay+g>+y%+5w;
y

2y° +ty +
1 /dy\2 1d
1 (1) _ ek
vy \ dt t dt
1 /dy\? 3 4
—_ —_— +7
2y<dt> 2y
1 n 1
2y y—1
1 /1 1
2 \y y—1
yly =Dy —t)
t2(t — 1)2

n > 3: Still open.
Anton Dzhamay (UNC)

+B8—5+7

t t—1 (6 — 1)
y?2 (y—1)2 é(yft)z)

Discrete Painlevé Equations

N dy\ 2 1+ 1 N 1 dy+
y—t dt t t—1 y—t/ dt
(a

y—1

July 28, 2017

5 / 61



Classification Scheme for Painlevé Equations

n=1: L. Fuchs, H. Poincaré

dy\ 2 3 .
o | =) =4y — g2y —gs, g2,83 €C Weierstrass p(t|g2, g3)

dt
dy 2 . . .
C a(t)y” + b(t)y + c(t), (Riccati equation)
n=2: P. Painlevé, B. Gambier — Painlevé equations and Painlevé transcendents:
d’y 2 . . . Prv
(P-I) Tz = 6y~ + t; Painlevé equations have parameters _~ ~
a2y Pyi — Pv 0 P P —> P
5.3
(P-1I) 5T = 2y° +ty + «; P
(P-TIT) dy _1(dy)? 1y Ly + 8+t + 2
) dt2 ~ y \dt tar Y WS
Hermite
d?y 1 /dy\? 3 8 | Gauss > K 7 ™ Air
L - A 2 3 2 2 _ L auss ummer > Yy
(P-1V) Pl (dt > + 5 + 4ty” + 2(t a)y + S = Bessel
d’y 1 1 dy\? 1ldy (v—1)? B y oy +1)
P-V) — = (— =) — =X + =) s
( ) dt2 2y+y—1><dt) tdt+ £2 (ay y) L y—1

d?y 1/1 1 1 dy\ 2 1 1 1 dy
PVI) —~==(-4+—4+— (=) - (z2+—+—)=
( )dtz 2 y+y71+y7t> (dt) <t+t71+y7t> dt+
y(yfl)(yft)< t t—1 t(t*1)>
A — byt ).
ee-nr \*TPETG T TG o

n > 3: Still open.
Anton Dzhamay (UNC) Discrete Painlevé Equations July 28, 2017 5/ 61



Discrete Painlevé Equations are some certain second-order (or two-dimensional)
non-autonomous nonlinear recurrence relations.



Discrete Painlevé Equations are some certain second-order (or two-dimensional)
non-autonomous nonlinear recurrence relations. Here are some examples (due to Shohat,
Brézin-Kazakov, Gross-Migdal, Grammaticos-Ramani-Papageorgiu-Nijhoff, Jimbo-Sakai,
Sakai, many others):

an+b

Xn

o d-P1: Xp41 + Xn +Xn—1 =

+1;



Discrete Painlevé Equations are some certain second-order (or two-dimensional)
non-autonomous nonlinear recurrence relations. Here are some examples (due to Shohat,
Brézin-Kazakov, Gross-Migdal, Grammaticos-Ramani-Papageorgiu-Nijhoff, Jimbo-Sakai,
Sakai, many others):

an—+ b
o d-Pr: Xpy1 4+ Xn +xXn-1 = + 1
Xn
ZnXn + a
o d-Pyr: Xp41 +Xn—1 = “—2;
1—xZ



Discrete Painlevé Equations are some certain second-order (or two-dimensional)
non-autonomous nonlinear recurrence relations. Here are some examples (due to Shohat,
Brézin-Kazakov, Gross-Migdal, Grammaticos-Ramani-Papageorgiu-Nijhoff, Jimbo-Sakai,
Sakai, many others):

an—+ b
o d-Pr: Xpy1 4+ Xn +xXn-1 = < + 1
n
o d-Pyr: Xp41 +Xn—1 = %’;
- a a
f+f=a3+gﬁ+sgi1
o d-Py: __(?+a2—6)(f+az—6+a4) , d=ao+ a1 +2a2+a3+aa
88 = sf(f — a3)



What are Discrete Painlevé Equations
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Discrete Painlevé Equations are some certain second-order (or two-dimensional)
non-autonomous nonlinear recurrence relations. Here are some examples (due to Shohat,
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As with the differential Painlevé equations, it is not obvious that a given recurrence relation
is in the discrete Painlevé class. The naming convention, based on the continuous limit, is
also not a very good one — ambiguous and does not cover all the cases. Correct approach is
through the algebro-geometric theory due to H. Sakai.
Analogue of the Painlevé property — singularity confinement.
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In 2001 H. Sakai, developing the ideas of K. Okamoto in the differential case, proposed a
classification scheme for Painlevé equations based on algebraic geometry. To each equation
corresponds a pair of orthogonal sub-lattices (M(R), M(R')) — the surface and the symmetry

sub-lattice in the Egl) lattice, and a translation element in W(RL).



Classification Scheme for Discrete Painlevé Equations

In 2001 H. Sakai, developing the ideas of K. Okamoto in the differential case, proposed a
classification scheme for Painlevé equations based on algebraic geometry. To each equation
corresponds a pair of orthogonal sub-lattices (M(R), M(R')) — the surface and the symmetry

sub-lattice in the Ez(gl) lattice, and a translation element in W(RL).

q-Pr
(1)\e (1)\4
(ES ) (Al )\0\2:8
l q-Py1 a-Py q-Prv, a-Prix /

(5) 5 (E50) > (B0 o (060) o (40) > (a1 @) > (arean ) > (a00)7 - (a))"

I A | A
(Eél))(s»(Egl))éa(Eél))t»(Dgl))c’J»(Agl))c'éﬁ((2A1)(1>)C’6—>(A(11))C’5 '
Py1,d-Py  Py,d-Pry P \

d-Pr1p alt. d-Pry
(480" (a) " (ag")°

Py, d-Ppy Ppp, alt.d-Py Py

Symmetry-type classification scheme for Painlevé equations
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Symmetry-type classification scheme for Painlevé equations

One of the objectives of my talk today is to explain the main ingredients of this scheme.

Anton Dzhamay (UNC) Discrete Painlevé Equations July 28, 2017 7/ 61



Classification Scheme for Discrete Painlevé Equations

In 2001 H. Sakai, developing the ideas of K. Okamoto in the differential case, proposed a
classification scheme for Painlevé equations based on algebraic geometry. To each equation
corresponds a pair of orthogonal sub-lattices (M(R), M(R')) — the surface and the symmetry

sub-lattice in the Ez(gl) lattice, and a translation element in W(RL).
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Symmetry-type classification scheme for Painlevé equations

One of the objectives of my talk today is to explain the main ingredients of this scheme.
But first, an example of applications.
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Let Sy be the usual permutation group and let ™ € Sn. Let 1,(7) be the length of the
maximal increasing subsequence in 7.
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maximal increasing subsequence in 7.

Ifm=7,28,1,3,4,10,6,9,5, then lio(r) = 5.

Let Ly, := ln(7) be the corresponding random variable on Sy, equipped with the uniform
probability distribution. Define
Card(m € Su|ln(7) < k)

pp = P(Ln < k) = -

What is the behavior of pj as n — co?
In particular, what is E(Ly), 0(Ln) as n — oco?



Let Sy be the usual permutation group and let ™ € Sn. Let 1,(7) be the length of the
maximal increasing subsequence in 7.

Ifm=7,28,1,3,4,10,6,9,5, then lio(r) = 5.

Let Ly, := ln(7) be the corresponding random variable on Sy, equipped with the uniform
probability distribution. Define
Card(m € Su|ln(7) < k)

px := P(Ln <k) = ol

What is the behavior of pj as n — co?
In particular, what is E(Ly), 0(Ln) as n — oco?

]E(Ln) ~ 2&7
(Ln) ~ o(v/n)
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E(Ln) = 2n'/2 — pioon'/8 + o(n'/9), o(Ln) = 0oon'/® + o(n'/)
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F(t) = exp (—/ (x — t)u(x)? dx) ,
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u(x) is a solution of Painlevé IT uxx = 2u? + xu, u(x) ~ —Ai(x) as x — co.

Solutions of Painlevé equations are called Painlevé transcendents. They are purely nonlinear
special functions.



The Baik-Deift-Johansson Theorem

Theorem (Baik-Deift-Johansson)

E(Ln) = 2n'/2 — pioon'/% + o(n'/9), o(Ln) = 0oon'/® 4 o(n!/%)
where pioo = 1.711..., 060 = 0.902.... In fact, what BDF proved was that

Ln—2n1/2
P ——74%— <t] > F() asn— 0o, —oo<t< oo,
nl/6

where

F(t) = exp (7 /too(x — t)u(x)? dx> ,

u(x) is a solution of Painlevé IT uxx = 2u® + xu, u(x) ~ —Ai(x) as x — oo.

Solutions of Painlevé equations are called Painlevé transcendents. They are purely nonlinear
special functions.

Painlevé transcendents appear in a wide range of important problems in pure and applied
mathematics and mathematical physics (from WDVV equations and quantum cohomology to
asymptotics of nonlinear waves and in a wide range of statistical and probabilistic models as
above). In particular, Fredholm Determinants describing certain eigenvalue statistics of
Random Matrix Models satisfy Painlevé equations (C. Tracy, H. Widom), this enables
computation of asymptotics of such statistics.
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Discretization and the Borodin-Okounkov-Olshanski Theorem

Theorem (Borodin; B-Okounkov-Olshanski)

Let us consider the poissonization of p}:

s 2n
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n+ n T](Xr% — 1) 9 fO
This last equation on x5, is known as the discrete Painlevé II.
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The Second Painlevé Equation Prp

Geometric approach to Painlevé equations that we consider was initiated in the works of
K. Okamoto in late 1970s — early 1980s, who introduced a very important notion of the
Space of Initial Conditions, that we explain for the Second Painlevé Equation Pyy.

Second Painlevé Equation Py

Equation form: )
Pyr(b) : vy =2y% +ty +(b—1/2)

Here b € C is a parameter, so we actually consider a whole 1-parameter family of equations.
It will be convenient for us to change from a second-order equation to the first-order
nonlinear system of differential equations. Note that this system can be written in the
Hamiltonian form.

Hamiltonian Form of Py

Hamiltonian system form: put q =y and p =y’ + y? + t/2:

, 5 t  OH
qg =pP—q *525
Hiyr(b) : oK
/
P =29p+b=———
Jdq

where H = Hir(q, p,t;b) = %p(p —2q2 — t) — bq is the Painlevé-IT Hamiltonian.
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The Second Painlevé Equation Prp

Geometric approach to Painlevé equations that we consider was initiated in the works of
K. Okamoto in late 1970s — early 1980s, who introduced a very important notion of the
Space of Initial Conditions, that we explain for the Second Painlevé Equation Pyy.

Second Painlevé Equation Py

Equation form: )
Pyr(b) : vy =2y% +ty +(b—1/2)

Here b € C is a parameter, so we actually consider a whole 1-parameter family of equations.
It will be convenient for us to change from a second-order equation to the first-order
nonlinear system of differential equations. Note that this system can be written in the
Hamiltonian form.

Hamiltonian Form of Py

Hamiltonian system form: put q =y and p =y’ + y? + t/2:

, 5 t  OH
qg =pP—q *525
Hiyr(b) : oK
/
P =29p+b=———
Jdq

where H = Hir(q, p,t;b) = %p(p —2q2 — t) — bq is the Painlevé-IT Hamiltonian.

Note that the Hamiltonian is time-dependent — Painlevé equations are non-autonomous.
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Originally Hyp(b) is defined on C x C. Following K. Okamoto, we extend it to P! x P! using
Q=1/q and P =1/p to get 4 charts (q,p), (Q,p), (a,P), and (Q, P):
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Originally Hyp(b) is defined on C x C. Following K. Okamoto, we extend it to P! x P! using
Q=1/q and P =1/p to get 4 charts (q,p), (Q,p), (a,P), and (Q, P):
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Compactification from C x C to P! x P*

Originally Hyp(b) is defined on C x C. Following K. Okamoto, we extend it to P! x P! using
Q=1/qand P =1/p to get 4 charts (q,p), (Q,p), (4, P), and (Q,P):
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Compactification from C x C to P! x P*

Originally Hyp(b) is defined on C x C. Following K. Okamoto, we extend it to P! x P! using
Q=1/qand P =1/p to get 4 charts (q,p), (Q,p), (4, P), and (Q,P):
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P'= 2gp —bp2  Ha:a=0 Hq:Q=0 pr— 2P p2

Hy:P=0 = Q lpLHp:P:o

Vertical leafs are (Q = 0,P #
0) and (P = 0,Q # 0) at
p1(0,0) we get 0/0 that we re-
solve using the blowup proce-
dure. The point p; is called a
base point.

When P = 0, slope of
q becomes vertical. The P P
line P = 0 (in this chart)
is called an inaccessible
divisor or a vertical leaf.

p p Vertical leaf is (Q = 0,P # 0)
: and base point is p7(0, 0).
H, :p=0 - H,:p=0
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This observation allows us to separate the lines through the origin as follows.



Technical Tool: The Blowup Procedure

Before moving forward, let us recall the blowup procedure from the algebraic geometry.

First we see how to blowup the origin at C2 (pictured as R2). Let (a,b) be a point away from
the origin. We can then describe it by cartesian coordinates, or by one coordinate and the
slope of the line through the origin:

p p p

p=b— k=21

q=a q=a

This observation allows us to separate the lines through the origin as follows.

e First, note that lines through the origin are parameterized by the projective line P! with
a homogeneous coordinate £ = [£p : £1], where we let k = £p/&;1 and [1 : 0] corresponds to
the vertical line.
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e Then consider, in the space C2 x P! with coordinates (q, p; [€o : €1]), the set S cut out
by the equation q€p = p&;.
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Technical Tool: The Blowup Procedure

Before moving forward, let us recall the blowup procedure from the algebraic geometry.

First we see how to blowup the origin at C2 (pictured as R2). Let (a,b) be a point away from
the origin. We can then describe it by cartesian coordinates, or by one coordinate and the
slope of the line through the origin:

p p p

p=b— k=21

q=a q=a

This observation allows us to separate the lines through the origin as follows.

e First, note that lines through the origin are parameterized by the projective line P! with
a homogeneous coordinate £ = [£p : £1], where we let k = £p/&;1 and [1 : 0] corresponds to
the vertical line.

e Then consider, in the space C2 x P! with coordinates (q, p; [€o : €1]), the set S cut out
by the equation q€p = p&;.

e In view of the above, for (q,p) # (0,0), the restriction of the projection
m:C2 x P! — C2 on S is an isomorphism, but 771(0,0) ~ PL. It is called the
exceptional divisor and is denoted by E.
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rational functions.

The set S = V(q€o — p&1) is covered by two charts (u,v) and (U, V). For a blowup with the
center at (qo, po) these charts are (q,p, [£0 : €&1]) = (u + qo, uv + po, [u : 1]) and

(q7 b, [50 : 51]) = (UV+ quV“F po, [1 : V])

Algebraically blowup is a coordinate substitution q = u+ qo = UV + qp and

p=uv+po =V + po.
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Technical Tool: The Blowup Procedure

Geometrically the blowup procedure “separates” lines through the center of the blowup by

“lifting” them according to their slope, algebraically it resolves 0/0 indeterminacies of
rational functions.

The set S = V(q€o — p&1) is covered by two charts (u,v) and (U, V). For a blowup with the

center at (qo,po) these charts are (q, p, [£o : €1]) = (u + qo, uv + po, [u : 1]) and
(q7p7 [ﬁo : 61]) = (UV + q07v + po, [1 : V])

Algebraically blowup is a coordinate substitution q = u+ qop = UV + qg and

p=uv+po =V +po.
E

LeM=1 M—E
(L-—E)e(M—E)=0

EeE=-1

If L2 =LeL =m then |
(L-E)?=m-1

Note that we need to distinguish the total transform 7~!(L) and the proper transform
7—1(L — (0,0)) that we denote by L — E. Exceptional divisor has the self-intersection
E2 = —1. Such curves are called —1-curves.
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Schematically, we visualize the blowup as follows:



Schematically, we visualize the blowup as follows:

p




Schematically, we visualize the blowup as follows:

p

o]

Note the proper transform notation and coordinates on E:
e E and Hq — E intersect at (U =0,V = 0);
e E and H, — E intersect at (u = 0,v = 0);
o if the line L had a slope 1/3, E and L — E intersect at (u=0,v =1/3) or (U =3,V =0).




We are now ready to resolve the base points of Py using the blowup procedure.



We are now ready to resolve the base points of Py using the blowup procedure.

For example, recall that in coordinates (Q, p) we had a base point p7(0,0). Blowing it up we
get the charts (u7,v7) and (Ur, V7) with Q = uy = U7V7 and p = uyvy = V. Extending to
the (u7,v7) chart (computations in chart (U7, V7) are similar) gives the following system.

t t t
Q=1-Q%+ 5Q2 =u} =1—(ur)3vr + 5(u7)2 uh =1 (ur)3vy + 5(u7)2

2 2 -
p':—p+b:uI7V7+u7vf,:ﬂ+b vh =

Q uz

vr+b t
T (un)*(v7)” S (wrvr)



Resolving the base points of Pyr

We are now ready to resolve the base points of Py using the blowup procedure.

For example, recall that in coordinates (Q, p) we had a base point p7(0,0). Blowing it up we
get the charts (u7,v7) and (Ur, V7) with Q = uy = U7V7 and p = uyvy = V. Extending to
the (u7,v7) chart (computations in chart (U7, V7) are similar) gives the following system.

t t t
Q=1-Q%+ 5Q2 =uf =1— (ur)’vr + 5(117)2 up =1— (ur)’vr + 5(117)2

=
2p 2urvy vri+b t
p'="S+b=wvrturvy="—"—+4b v = T2 4 (ur)? (vr)? = < (urvr)
Q uz ury 2
P Hy — E7
H
Q pr P
Hy: Q=0
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Resolving the base points of Pyr

We are now ready to resolve the base points of Py using the blowup procedure.

For example, recall that in coordinates (Q, p) we had a base point p7(0,0). Blowing it up we
get the charts (u7,v7) and (Ur, V7) with Q = uy = U7V7 and p = uyvy = V. Extending to
the (u7,v7) chart (computations in chart (U7, V7) are similar) gives the following system.

t t t
Q' =1-Q%+ Q% =ur =1—(ur)’vr + S(ur)* |7 =1 (ur)’vr+ (ur)”
2 2 - b
urv t
p'= 2 +b=ujvrturvh = T 4 v = YR 4 ()2 (vr)? = L (urvr)
Q urz ur 2
P Hy — E7
H
Q pr
Hy: Q=0
For u7 =0 (i.e., on the exceptional curve E7) we get a vertical leaf except when vy = —b at

which point v/ is indeterminate. So we get a new base point pg(0, —b) in this chart. Blowing
it up and taking the proper transform of E;7 gives us vertical leaf Dg = E7 — Eg of
self-intersection —2 and the computation in (us, vg) and (Ug, Vg) charts shows that there are
no new base points.
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The Space of Initial Conditions for Py

Applying the blowup to the base points p; € P! x P!, extending to the new charts (u;,v;) and
(Ui, Vi), checking new exceptional divisors E; for base points and blowing them up until
everything is resolved, and finally removing the vertical leaves, we get the surface X that is
called the Okamoto space of Initial Conditions for Pyj. For all Painlevé equations, X is a
blowup of P! x P! at 8 points (or P2 at 9 points), with the configuration of the removed
vertical leaves D; essentially characterizing the equation. For Py; we get the following.

Anton Dzhamay (UNC) Discrete Painlevé Equations July 28, 2017 17 / 61



The Space of Initial Conditions for Py

Applying the blowup to the base points p; € P! x P!, extending to the new charts (u;, vi) and

(Ui, Vi), checking new exceptional divisors E; for base points and blowing them up until

everything is resolved, and finally removing the vertical leaves, we get the surface X that is

called the Okamoto space of Initial Conditions for Pyj. For all Painlevé equations, X is a
blowup of P! x P! at 8 points (or P2 at 9 points), with the configuration of the removed
vertical leaves D; essentially characterizing the equation. For Py; we get the following.

Hp — P1
psd b1
P4I
psd | <770
) l
P pse” | P7
Hq H,

Anton Dzhamay (UNC)

Discrete Painlevé Equations

July 28, 2017

17 / 61



The Space of Initial Conditions for Py

Applying the blowup to the base points p; € P! x P!, extending to the new charts (u;, vi) and
(Ui, Vi), checking new exceptional divisors E; for base points and blowing them up until
everything is resolved, and finally removing the vertical leaves, we get the surface X that is
called the Okamoto space of Initial Conditions for Pyj. For all Painlevé equations, X is a
blowup of P! x P! at 8 points (or P2 at 9 points), with the configuration of the removed
vertical leaves D; essentially characterizing the equation. For Py; we get the following.

b1
Hp
b2
Il o
p3
P4I
P | <
P5
pod
HP
P8 p7
Hy Hq
P uy 1
p1(Q=0,P =0) « po ule:lefg:() « p3 u2:u1:0v27—:5 + pyg(ug =ug =0,
Vi
vg —1/2 ) ( v3 t) ( vg +t/4 )
vg= ———— =0 < pslug=uz3=0,vy = — =—— | < pglusg=uy =0,vg = —— =0 .
ug ug 4 uy
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Note that all vertical leaves are —2-curves. This configuration can be described by a Dynkin
diagram where nodes are —2-curves and connected nodes correspond to intersecting curves.



Note that all vertical leaves are —2-curves. This configuration can be described by a Dynkin
diagram where nodes are —2-curves and connected nodes correspond to intersecting curves.

Do = Es — E¢ Dy =E1 — E2
D1 =E4 —Es Ds =Hq —E1 — E7
Dy =E3 —Ey D¢ = E7 — Eg
D3 = Eg — E3 D7 =Hp — E1 — E2




The Space of Initial Conditions for Pr: the Dynkin diagram

Note that all vertical leaves are —2-curves. This configuration can be described by a Dynkin
diagram where nodes are —2-curves and connected nodes correspond to intersecting curves.

Do =Es — Eg Dy =E1 — E2

D1 =E4 —Es Ds =Hq — E1 — E7

Dy =E3 —Ey4 De = E7 — Eg

D3 = Eo — E3 D7 =Hp — E1 — E2
D7

ook oo

Do D1 D2 Ds Dy Ds Dg

For Py, the affine Dynkin diagram describing it of the type E(71)7 and so we say that the

space of initial conditions for Pyp is P(E(71)).
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The Space of Initial Conditions for Pr: the Dynkin diagram

Note that all vertical leaves are —2-curves. This configuration can be described by a Dynkin
diagram where nodes are —2-curves and connected nodes correspond to intersecting curves.

Do =Es —Eg Dy =E1 — E2

D1 =E4 —Es Ds =Hq — E1 — E7

Dy =E3 —Ey4 De = E7 — Eg

D3 = Eo — E3 D7 =Hp — E1 — E2
D7

ook oo

Do D1 D2 Ds Dy Ds Dg

For Py, the affine Dynkin diagram describing it of the type E(71)7 and so we say that the

space of initial conditions for Pyp is P(E(71)).
In certain sense, this type completely characterizes the equation!

For other Painlevé equations, we get:

P = P(DYY), Piy =PDY)), Ph =PDY), Prv=PE), Py=pPDY), Py=1
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Bécklund Transformation is a symmetry of the family Pyi(b). That is, it preserves the form
of the equation, but can change the value of the parameter b.



Bécklund Transformation is a symmetry of the family Pyi(b). That is, it preserves the form
of the equation, but can change the value of the parameter b.

Pu(b): y”" =2y +ty +(b—1/2) Hy(b) :




Béacklund Transformation is a symmetry of the family Pry(b). That is, it preserves the form
of the equation, but can change the value of the parameter b.
t  OH
g = —_q2 -2 = —
q P—q 2 op

y" =2y +ty + (b —1/2) Hyr(b) : OH
p' = 2qp+b - T a_
Jdq

PH (b) N

Consider a map (q,p, t;b) — (&, B, t; b) such that Prr(b) — Pr1(b) (or Hyr(b) — Hyr(b)).




Béacklund Transformation is a symmetry of the family Pry(b). That is, it preserves the form
of the equation, but can change the value of the parameter b.
t  OH
g = —_q2 -2 = —
q P—q 2 op

y" =2y +ty + (b —1/2) Hyr(b) : OH
p, = 2qp+b - T a_
Jdq

PH (b) N

Consider a map (q,p, t;b) — (&, B, t; b) such that Prr(b) — Pr1(b) (or Hyr(b) — Hyr(b)).

For P11, there are two such transformations

s:(q,p,t;b) = (q a+b/p,p=p,t
—q,B=—p+2¢° +t;

5=y
tih = b)

r:(q,p,t;b) = (c"l—



Béacklund Transformations of Pyp

Bécklund Transformation is a symmetry of the family Pry(b). That is, it preserves the form
of the equation, but can change the value of the parameter b.

Second Painlevé Equation Pry(b) (Hy(b))

p 5 b oOH

q =pP—q _5:071)
PH(b) E y” = 2y3 +ty+ (b— 1/2) HH(b) 5 OH
p'=2p+b=———
0q

Béacklund Transformations

Consider a map (q,p,t;b) — (&, D, t; B) such that Pr(b) — PH(B) (or Hyz(b) — HH(B))
For Py, there are two such transformations:

s:(q,p,t;b) = ((i:q+b/p,f):p,f:t;5: —b)

[on]
Il

1-b)

r: (q’p’t'b) - ((i: 7q7f): *p+2q2 +t;f:t;
It is easy to verify that both s and r are Bécklund transformations,

: Prr(b Pr(—b y = _
s : Pr1(b) — Pr1(—b) y—§ y+y’+y2+t/27

r: Pri(b) = Pri(1 —b) y=§¥=-y.
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Note that each of the Backlund transformations r and s is an involution, s* = r* = e. In fact,
their actions on the parameter b is a reflection about b = 0 for s : b — —b and a reflection
aboutb=1/2forr:b—1—b:
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Note that each of the Backlund transformations r and s is an involution, s* = r* = e. In fact,
their actions on the parameter b is a reflection about b =0 for s : b — —b and a reflection
aboutb=1/2forr:b—1—b:
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I I I
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I I I
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I I I
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Srsrs Srs
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Action of Backlund transformations on the parameter space



Backlund Transformations and Reflections

Note that each of the Bicklund transformations r and s is an involution, s = r? = e. In fact,
their actions on the parameter b is a reflection about b = 0 for s : b — —b and a reflection
about b=1/2forr:br—1—b:

.

SIS
W=

—

|
|
1 |

SISIrs SIS

i

rsr

Action of Backlund transformations on the parameter space

The reflections s and r generate the affine Weyl group W(A(ll)) and adding an involution
o = (sr) switching the mirrors generates an extended affine Weyl group AW/(A(ll)):

W(A(ll)> =(s,r|s2=r2=¢) W(A(ll)) =(s,r,0 |s2 =12 = 0% = ¢,50 = o)
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At the mirrors we get special solutions (rational and expressible in terms of special
functions):
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their actions on the parameter b is a reflection about b = 0 for s : b — —b and a reflection
about b=1/2forr:br—1—b:
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Action of Backlund transformations on the parameter space
The reflections s and r generate the affine Weyl group W(A(ll)) and adding an involution
o = (sr) switching the mirrors generates an extended affine Weyl group AW/(A(ll)):
W (A(ll)> =(s,r|s2=r2=¢) W <A(11)) = (s,r,0 |2 =12 = 02 = e,50 = o)

At the mirrors we get special solutions (rational and expressible in terms of special
functions):

e Pr1(1/2): y" = 2y3 + ty has one solution (q, p,b) = (0,t/2,1/2).
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Action of Backlund transformations on the parameter space
The reflections s and r generate the affine Weyl group W(A(ll)) and adding an involution
o = (sr) switching the mirrors generates an extended affine Weyl group AW/(A(ll)):
W (A(ll)> =(s,r|s2=r2=¢) W <A(11)) = (s,r,0 |2 =12 = 02 = e,50 = o)

At the mirrors we get special solutions (rational and expressible in terms of special
functions):

e Pr1(1/2): y" = 2y3 + ty has one solution (q, p,b) = (0,t/2,1/2).

e Py(—1/2): applying s gives us another solution (q, p,b) = (1/t,t/2,—1/2).
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Note that each of the Bicklund transformations r and s is an involution, s = r? = e. In fact,
their actions on the parameter b is a reflection about b = 0 for s : b — —b and a reflection
about b=1/2forr:br—1—b:
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Action of Backlund transformations on the parameter space

The reflections s and r generate the affine Weyl group W(A(ll)) and adding an involution
o = (sr) switching the mirrors generates an extended affine Weyl group AW/(A(ll)):

W (A(ll)> =(s,r|s2=r2=¢) W <A(11)) = (s,r,0 |2 =12 = 02 = e,50 = o)
At the mirrors we get special solutions (rational and expressible in terms of special
functions):
e Py1(1/2): y” = 2y3 + ty has one solution (q,p,b) = (0,t/2,1/2).
e Pyi(—1/2): applying s gives us another solution (q, p,b) = (1/t,t/2,—-1/2).
e Hyp(0): p’ = 2qp has a solution p = 0, and then ' = —q? — t/2 is a Riccati equation.
Setting q = u’/u reduces it to the Airy equation u”” + (t/2)u = 0. If g and ¢ are two
fundamental solutions of the Airy equation, we get a one-parameter family of solutions

’ ’
copptciey
b) = (===2—+-1,0,0).
(a,p,P) = (oot 0:0)
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Composing basic Backlund transformations acting on the parameter space results in
translations Ty =ros:b+—b+1and T_; =sor: b+ b — 1. This is a time step in the
independent variable, whereas the resulting dynamic on the phase space of (q, p) variables is
known as a discrete Painlevé equation alt. d-Pr.



Difference Painlevé Equations

Composing basic Backlund transformations acting on the parameter space results in
translations Ty =ros:b—b+1and Ty =sor:b+ b —1. This is a time step in the
independent variable, whereas the resulting dynamic on the phase space of (q, p) variables is
known as a discrete Painlevé equation alt. d-Pj.

© ©
D e e T A B >
C? c? c?
‘ (a,p) \ ‘ (a,p) \ ‘ (a,p)
| | | | |
—_— = — = —o— b
ib—1 T b ! T Ub+1
! T ! T !
- 1-b a=-2q
a=-9% 52 s P .
T 1:4 - T
PP =2d" —p+t ! B=2(q+f) —p+t
b=b-1 b—b41
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What can go wrong? Recall our map: § = —q + ﬁ, p=2¢2—p+t.
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0
0 =7 indeterminate (base) point, resolve using the blowup procedure



What can go wrong? Recall our map: § = —q + ﬁ, P=2q%>—p+t.

Il
)

f(q,pib)

= = oo if we compactify C to P!
g(a, pi b)

q=

olool=rlo

=7 indeterminate (base) point, resolve using the blowup procedure

Step 1: Compactification from C? to X = P! x P!,



Difference Painlevé Equation as a Birational Map

What can go wrong? Recall our map: § = —q + ﬁ’ P=2q%>—p+t.

0
2 -0
1

f(q,p; b 1

q= w ={ 2 = oo if we compactify C to P!

g(a,pi b) 0
0
0

=7 indeterminate (base) point, resolve using the blowup procedure

Step 1: Compactification from C? to X = P! x P!,
Remark: For a compact surface, we can talk about the Picard Lattice:

Pic(X) = Div(X)/ P(X) = ZHq ® ZHp, HooHqg=HpoHp =0, HqoHp =1
—Kx =2Hq +2H, — anti-canonical divisor (dual to the symplectic area form) w = dq A dp
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Difference Painlevé Equation as a Birational Map

What can go wrong? Recall our map: § = —q + ﬁ’ P=2q%>—p+t.

0
2 -0
1

f(q,p; b 1

q= w ={ 2 = oo if we compactify C to P!

g(a,pi b) 0
0
0 =7 indeterminate (base) point, resolve using the blowup procedure

Step 1: Compactification from C? to X = P! x P!,
Remark: For a compact surface, we can talk about the Picard Lattice:

Pic(X) = Div(X)/ P(X) = ZHq ® ZHp, HooHqg=HpoHp =0, HqoHp =1
—Kx =2Hq +2H, — anti-canonical divisor (dual to the symplectic area form) w = dq A dp

q=0 q=0o0
Extending the map ¢ : P! x P! -—-s P1 x P!
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Difference Painlevé Equation as a Birational Map

What can go wrong? Recall our map: § = —q + ﬁ’ P=2q%>—p+t.

0
2 -0
1

f(q,p; b 1

q= w ={ 2 = oo if we compactify C to P!

g(a,pi b) 0
0
0 =7 indeterminate (base) point, resolve using the blowup procedure

Step 1: Compactification from C? to X = P! x P!,
Remark: For a compact surface, we can talk about the Picard Lattice:
Pic(X) = Div(X)/ P(X) = ZHq ® ZHp, HqoHqg=HpoHp =0, HqeHp =1
—Kx =2Hq +2H, — anti-canonical divisor (dual to the symplectic area form) w = dq A dp
Hq
p =00

Extending the map ¢ : P! x P! -—-s P1 x P!
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Step 2: Find the Indeterminate points of both the forward and the backward dynamic.



Step 2: Find the Indeterminate points of both the forward and the backward dynamic.

H, H,
p =00 — H
1—b p1 P
7T s —p e
p=2q"—p+t
p=0 — Hp
q=0 q=00



Step 2: Find the Indeterminate points of both the forward and the backward dynamic.

H, H,
1-b P o
d=-q+ Sy ——
p=24" —p+t
p=0 — Hp
In the coordinates (P, Q): q=0 q=00

QP((1-b)Q—-t)+Q*—2P 0 o
Q@P - Q2 riqep) o Ve e=FP=0

2P —Q24+tQ2P 0
_ @ HRT 0 Q=P =0
Q2P 0

q=

el



Step 2: Find the Indeterminate points of both the forward and the backward dynamic.

H, H,
1-b P o
d=-q+ Sy ——
p=24" —p+t
p=0 — Hp
In the coordinates (P, Q): q=0 q=00

Q*P(1-p)Q—-t)+Q>—2P 0 _p—
QP — Q% + 1Q2P) —awhenQ—P—O
—_ 02 2

:W%Qlazgwheanon

So (Q,P) = (0,0) (or (q,p) = (00, 00)) is the indeterminate point of the dynamic.

q=

el



The Space of Initial Conditions

Step 2: Find the Indeterminate points of both the forward and the backward dynamic.

Hq Hq
p=o0 | H
1-b pi| *
1= 79% 3 —p 1
p=2q"—p+t
p=0 — Hp
In the coordinates (P, Q): q=0 q =00
2P((1-b)Q -t 2_2P 0
GZQ (« Q-9 +Q =—-whenQ=P=0
Q(2P — Q2 +1Q?P) 0
2P — Q% + tQ?P
ﬁ:ﬂzgwhenQ:P:O
Q2P 0

So (Q,P) = (0,0) (or (q,p) = (00, 00)) is the indeterminate point of the dynamic.
Resolve it using the blowup procedure. In the blowup coordinates (u1,v1), Q =ui, P = uivi:

G= u?vl (1 =b)ur —t) + u% —2u1vy u%vl (1 =Db)ur —t) +ur — 2vy _—2vi -
ui (2uivy — u% + tu?v1) ui(2vy —ug + tu%vl) 0 ’
2uivy — u? + tudy 2vy —uy + tu?v 2v
p= 1 31 17t _ 2 12 11:—1200 on Ei: up =0.
ujvy ufy 0
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Thus, ¢(E1) = p1 = (00,00).



and V1 = 2 we get

kellNel]

Thus, ¢(E1) = p1 = (00, 00). In the blowup coordinates G1 = é

_— ui(2urvi — u% + tuzi’vl) —0
1= u"fvl ((1 — b)u1 — t) + u% —2uy1vy o
wm (u2vy ((1 —b)ur —t) +ur — 2v1) —o
(2v1 — ug + tu?vy)? N

on E;: u; =0.




Thus, ¢(E1) = p1 = (00, 00). In the blowup coordinates Gy = = and v1 = 2 we get

ilar

1

q

_— ui(2urvi — u% + tu:I’vl) —0

1= u"fvl ((1 — b)ln — t) + u% —2uy1vy -

ui (u%vl (1 =b)ug —t) +uw — 2v1) 0
(2vi —u1 + tu%vl)2

on Eq: uy =0.

V1 =

Thus, ¢ collapses Eq on the new indeterminate point p2(@i1 = 0,v; = 0). This point would
appear as an indeterminate point for the inverse map. Thus, we have to blowup again at ps
and 72 and continue the process:



The Space of Initial Conditions

Thus, ¢(E1) = p1 = (00, 00). In the blowup coordinates i1 = = and v =

Rellls
gellel]

ug (2uivy — u% + tui’vl)
u?vl (1 =b)ur —t) + uf — 2u1vq
B ui (u%vl (1 =Db)ug —t) +ug — 2v1)

V1 = =0
(2vi —u1 + tu%vl)2

i = =0

on E1: uy =0.

we get

Thus, ¢ collapses E; on the new indeterminate point p2(t@; = 0,v1 = 0). This point would
appear as an indeterminate point for the inverse map. Thus, we have to blowup again at p2

and 72 and continue the process:

0 L S
9 2
Hy — E; Hp — E;
b By
Hp 0 Hf;
Hq Hq—E1 Hy Hy—Eq

Extending the map to ¢ : X1 --+» X3
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The Space of Initial Conditions

Thus, ¢(E1) = p1 = (00, 00). In the blowup coordinates i1 = = and v =

Tilar

we get

Rellls

ug (2uivy — u% + tui’vl)
u?vl (1 =b)ur —t) + uf — 2u1vq
o= ui (u%vl (1 =Db)ug —t) +ug — 2v1)
(2vi —u1 + tu%vl)2

i = =0

on E1: up =0.
=0

Thus, ¢ collapses E; on the new indeterminate point p2(t@; = 0,v1 = 0). This point would
appear as an indeterminate point for the inverse map. Thus, we have to blowup again at p2
and 72 and continue the process:

0 I v
2

Hy — E; Hp — E;
b By
Hp 0 Hf;
Hqy Hq—-E: Hy Hg - E;

Extending the map to ¢ : X1 --» X3
Note that
HqoHq=HpoHp,=HqeE1 =HpeE =0,

Pic(X1) = ZHq © THy & 761,
CX0) = I OIHp SLEL o =1, Erefr— L.
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The complete resolution of indeterminacies is achieved after blowing up eight (some infinitely
close) points according to the following diagram:



The complete resolution of indeterminacies is achieved after blowing up eight (some infinitely
close) points according to the following diagram:

Hq Hq
p=o00 Hp
p](QZO,P=0)<—p2(U1=0,V1:0)(—p3(UQ=0,V2=1/2)
< pa(uz =0,v3 =0) < ps(ua = 0,vq4 = —t/4)
H. S pe U5=07V5=%)
p=0 — ?
q=0 q=occ P7(Q=0,p=0)<« ps(ur =0,vz = —b)



The complete resolution of indeterminacies is achieved after blowing up eight (some infinitely
close) points according to the following diagram:
Hq Hq

p=o00 Hp
pl(Q = O,P = 0) Al pz(ul = O,Vl = 0) < pg(ug = O,Vz = 1/2)
< pa(uz =0,v3 =0) < ps(ua = 0,vq4 = —t/4)
Hp<— pe (us =0,vs = 132
p=0 —

q=0 q=occ P7(Q=0,p=0)<« ps(ur =0,vz = —b)

e The resulting surface A}, is called the Okamoto Space of Initial Conditions for our
equation. In this case it coincides with the Space of Initial Conditions for Pyy.



The complete resolution of indeterminacies is achieved after blowing up eight (some infinitely
close) points according to the following diagram:
Hq Hq

p=o00 Hp
pl(Q = O,P = 0) Al pz(ul = O,Vl = 0) «— pg(ug = O,Vz = 1/2)
< pa(uz =0,v3 =0) < ps(ua = 0,vq4 = —t/4)
Hp<— pe (us =0,vs = 132
p=0 —

q=0 q=occ P7(Q=0,p=0)<« ps(ur =0,vz = —b)

e The resulting surface A}, is called the Okamoto Space of Initial Conditions for our
equation. In this case it coincides with the Space of Initial Conditions for Pyy.

e The map ¢ extends to the isomorphism ¢ : &}, — &} (note that the parameter changes,
our mapping is non-autonomous).



The Space of Initial Conditions

The complete resolution of indeterminacies is achieved after blowing up eight (some infinitely
close) points according to the following diagram:

Hq Hq
p =00 — Hp
pl(Q:O,PZO)epg(ul:O,v1:0)ep3(u2:0,w:1/2)
— p/1(u3 =0,v3 = 0) — p5(u4 =0,vq4 = 7t/4)
Hp<—p6 115:O,V5:1%1)
p=0
q=0 q=o00 P7(Q=0,p=0)<« ps(ur =0,v7 = —b)

@ The resulting surface A}, is called the Okamoto Space of Initial Conditions for our
equation. In this case it coincides with the Space of Initial Conditions for Pyy.
e The map ¢ extends to the isomorphism ¢ : &}, — &} (note that the parameter changes,
our mapping is non-autonomous).
o We get
8
Pic(Xy) = ZHq @ ZHp © €D Z&;.

i=1
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The Space of Initial Conditions

The complete resolution of indeterminacies is achieved after blowing up eight (some infinitely
close) points according to the following diagram:

Hq Hq
P =00 — Hp
p1(Q =0,P =0) < p2(u1 =0,v1 =0) < p3(uz =0,vo =1/2)
— p/1(u3 =0,v3 = 0) — p5(u4 =0,vq4 = 7t/4)
Hp<— p6 (us = 0,vs = 1%1’
p=0 —
=0 q=o00 P7(Q=0,p=0) <« ps(ur =0,vr = —b)

@ The resulting surface A}, is called the Okamoto Space of Initial Conditions for our
equation. In this case it coincides with the Space of Initial Conditions for Pyy.
e The map ¢ extends to the isomorphism ¢ : &}, — &} (note that the parameter changes,
our mapping is non-autonomous).
o We get
8
Pic(Xy) = ZHq @ ZHp © €D Z&;.
i=1
o The type of the surface (and hence, of the equation) is determine by the configuration of
the blow-up points that is reflected in the decomposition of the (unique) anti-canonical
divisor —Kx, into the irreducible components,

—Kx =2Hs+2Hg —E1—E2—E3—E4—E5—Eg—E7 —Eg = E m; D;.
i
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Step 3: Find the irreducible components of the anti-canonical divisor from the complete
blowup diagram for the surface X}:
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Step 3: Find the irreducible components of the anti-canonical divisor from the complete
blowup diagram for the surface Xy:—2 =2 -2 -2 -1 -2
Es —Eg

Ee

The Okamoto Space of initial conditions X}, for alt. d-Pg
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Step 3: Find the irreducible components of the anti-canonical divisor from the complete

blowup diagram for the surface Xy:—2 =2 -2 -2 -1 -2

E; — E2

The Okamoto Space of initial conditions X}, for alt. d-Pg

Es — Eg

From here we see that the configuration of the irreducible components of —Ky is given by

the affine Dynkin diagram of type E(71) (hence alt. d-Pj is also called d-P(E(71))):
D7

Tz
1 2 3 4 3 2 1
O O O O O O O
Do Dy Do D3 Dy Ds Dg
Ky =2Hq+2Hp, —E1—E2—E3—E4—E5—E6 —E7 — &3

= Do + 2D1 + 3D2 + 4D3 + 3D4 + 2D5 + Dg + 2D7.
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In general, blowing up P! x P! at eight points results in a surface X. Its Picard lattice
Pic(X’) has rank 10, and the orthogonal complement in Pic(X’) of the class of the

anti-canonical divisor —K x has the affine type E(sl)

(F
2 4 6 5 4 3 2 1
O O O O O O O
with the anti-canonical divisor class

—Kx =2H +2Hg —E1 —E2 —E3—E4—E5 —Eg — E7 — &8



The Symmetry Sub-Lattice

In general, blowing up P! x P! at eight points results in a surface X. Its Picard lattice
Pic(X’) has rank 10, and the orthogonal complement in Pic(X’) of the class of the

anti-canonical divisor —K y has the affine type Eg)

TJ
2 4 6 5 4 3 2 1
O O O O O O O
with the anti-canonical divisor class

—Kx :2Hf+2Hg_(€1_52_53_54_55_66—57—58
We say that X is a generalized Halphen surface of index zero if it has a unique anti-canonical
divisor of canonical type: —Kx ® D; = 0 for any irreducible component D; of —/C .
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The Symmetry Sub-Lattice

In general, blowing up P! x P! at eight points results in a surface X. Its Picard lattice
Pic(X’) has rank 10, and the orthogonal complement in Pic(X’) of the class of the

anti-canonical divisor —K y has the affine type Eg)

Ts
2 4 6 5 4 3 2 1
O O O O O O O
with the anti-canonical divisor class
—Kx =2H +2Hg —E1 —E2 —E3—E4—E5 —Eg — E7 — &8
We say that X is a generalized Halphen surface of index zero if it has a unique anti-canonical
divisor of canonical type: —Kx ® D; = 0 for any irreducible component D; of —/C .
The orthogonal complement (—/Cx )" < Pic(X) has two important complementary

sub-lattices:
o The surface sub-lattice NM(R) = Span;{D;};
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The Symmetry Sub-Lattice

In general, blowing up P! x P! at eight points results in a surface X. Its Picard lattice
Pic(X’) has rank 10, and the orthogonal complement in Pic(X’) of the class of the

anti-canonical divisor —K y has the affine type Eg)

T;
2 4 6 5 4 3 2 1
O O O O O O O
with the anti-canonical divisor class
—Kx =2H +2Hg —E1 —E2 —E3—E4—E5 —Eg — E7 — &8
We say that X is a generalized Halphen surface of index zero if it has a unique anti-canonical
divisor of canonical type: —Kx ® D; = 0 for any irreducible component D; of —/C .
The orthogonal complement (—/Cx )" < Pic(X) has two important complementary
sub-lattices:
o The surface sub-lattice NM(R) = Span;{D;};
o The symmetry sub-lattice M(R') = Span;{a;}, which is the orthogonal complement of
R (thus, reflections w; in the roots «; preserve the type of the surface).
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The Symmetry Sub-Lattice

In general, blowing up P! x P! at eight points results in a surface X. Its Picard lattice
Pic(X’) has rank 10, and the orthogonal complement in Pic(X’) of the class of the

anti-canonical divisor —K y has the affine type Eg)

T;
2 4 6 5 4 3 2 1
O O O O O O O
with the anti-canonical divisor class
—Kx =2H +2Hg —E1 —E2 —E3—E4—E5 —Eg — E7 — &8
We say that X is a generalized Halphen surface of index zero if it has a unique anti-canonical
divisor of canonical type: —Kx ® D; = 0 for any irreducible component D; of —/C .
The orthogonal complement (—/Cx )" < Pic(X) has two important complementary
sub-lattices:
o The surface sub-lattice NM(R) = Span;{D;};
o The symmetry sub-lattice M(R') = Span;{a;}, which is the orthogonal complement of
R (thus, reflections w; in the roots «; preserve the type of the surface).

1 1 _

g =2Hq+Hp —E1—E2—E3—E4— E5 — &,
c—o
ag a1 o1 =Hp —E7 — Es.
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The Symmetry Sub-Lattice

In general, blowing up P! x P! at eight points results in a surface X. Its Picard lattice
Pic(X’) has rank 10, and the orthogonal complement in Pic(X’) of the class of the

anti-canonical divisor —K y has the affine type Eg)

T;
2 4 6 5 4 3 2 1
O O O O O O O
with the anti-canonical divisor class
—Kx =2H +2Hg —E1 —E2 —E3—E4—E5 —Eg — E7 — &8
We say that X is a generalized Halphen surface of index zero if it has a unique anti-canonical
divisor of canonical type: —Kx ® D; = 0 for any irreducible component D; of —/C .
The orthogonal complement (—/Cx )" < Pic(X) has two important complementary
sub-lattices:
o The surface sub-lattice NM(R) = Span;{D;};
o The symmetry sub-lattice M(R') = Span;{a;}, which is the orthogonal complement of
R (thus, reflections w; in the roots «; preserve the type of the surface).

1 1 _

g =2Hq+Hp —E1—E2—E3—E4— E5 — &,
c—o
ag a1 o1 =Hp —E7 — Es.

e Note that M(R) N M(RL) = Spany(—Kx).
—Kx =Dg + 2D1 + 3D2 + 4D3 + 3D4 + 2D5 + D¢ + 2D7 = ag + a1.
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Step 4: Compute the induced map ¢« : Pic(A},) — Pic(A)



Step 4: Compute the induced map ¢« : Pic(A},) — Pic(A)
Hp—=2Hq+3Hp —E1 —E2 — E3 — E4 — 267 — 2E3 Hq— Hq+Hp —E7— &8

gli—>'Hq+'Hp—€4—57—€s S5l—)’Hp—€8
gz'—)Hq+Hp—g3—£7—£8 E6 = Hp — &7
E3rr Hq+Hp —E2—E7— & Er > &5
EarrHq+Hp —E1—E7—Es Es > &



The Induced Dynamic on Pic(X)

Step 4: Compute the induced map ¢« : Pic(A},) — Pic(A)
Hpi—>2'Hq—l—3Hp—51—52—53—54—287—258 Hq

E1=Hg+Hp —E1—E7— &8 Es
o Hqg+Hp —E3—E7—E&s Es
53'—>Hq+7{p—52—57—58 Er
54'—>Hq+Hp—51—57—58 Es

On N(R) = N(EW), . = (DeD6)(D1Ds)(D2D4) € Aut(E):

D7 Do = E5

TQ D; = Eq4

1 2 3 4 3 2 1 Do = E3
O O O O O O O

Do Dy D2 D3 Dy Ds D¢ D3 = Ez

Anton Dzhamay (UNC)
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— Hp — &8

— Hp — &7
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The Induced Dynamic on Pic(X)

Step 4: Compute the induced map ¢« : Pic(A},) — Pic(A)
Hp = 2Hq+3Hp —E1 — E2 — E3 — E4 — 287 — 2E3

Hq— Hq+Hp —E7— &8

E1=Hg+Hp —E1—E7— &8 Es = Hp — &8
o Hqg+Hp —E3—E7—E&s E6 = Hp — &7
53'—>Hq+7{p—52—57—58 Er— &5
54'—>Hq+Hp_51—57—58 Es — &g
On N(R) = N(EW), . = (DeD6)(D1Ds)(D2D4) € Aut(E):
D7 Do =Es —E¢ D4=E; —E2
2 D1 =E4 —Es5 D5:Hq—E1
o 2 3 4 3 2 o Dy =Es3—Es D¢ =E7 —Es
Do Dy D2 D3 Dy Ds D¢ Ds =E —Ez D7 =Hp, -

On N(RL) = NAWM), o : (a0, 1) = (—a1, a0 + 201) = (a0, 1) + (=1, 1)(—Kx):

1 1 ag =2Hq+Hp —E1—E—E3—E4—E5 — &6
c—O
@0 ol ay =Hp — E7 — Es, —Kx =ap+ a1
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The Induced Dynamic on Pic(X)

Step 4: Compute the induced map ¢« : Pic(A},) — Pic(A)
Hp = 2Hq+3Hp —E1 — E2 — E3 — E4 — 287 — 2E3 Hq— Hq+Hp —E7— &8

E1=Hg+Hp —E1—E7— &8 Es = Hp — &8
o Hqg+Hp —E3—E7—E&s E6 = Hp — &7
53'—>Hq+7{p—52—57—58 Er— &5
54'—>Hq+Hp—51—57—58 Es — &g

On N(R) = N(EW), . = (DeD6)(D1Ds)(D2D4) € Aut(E):

D7 Do=E5; —Eg D4y =E; —E»o
2 Dy =E4—Es Ds=Hq—-E1—Er
1 2 3 4 3 2 1 D2 =E3—E4 D¢ =E7r—Eg
C J J S S S O
Do Dy Do D3 Dy Ds Ds D3 =FEp —Es D7 =Hp — i —E»

On N(RL) = NAWM), o : (a0, 1) = (—a1, a0 + 201) = (a0, 1) + (=1, 1)(—Kx):

1 1 _

ag =2Hq+Hp —E1—E2—E3—-E4—E — &6
c—O
ag ay a1 = Hp — E7 — Es, “Kx=a0+ o

Definition: A discrete Painlevé equation is a discrete dynamical system on the family A},
induced by a translation in the M(R™1) affine symmetry sub-lattice of the surface.
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We now consider the reverse process: how, starting from the translation vector, to write
down the corresponding discrete Painlevé equation.



We now consider the reverse process: how, starting from the translation vector, to write
down the corresponding discrete Painlevé equation.
Let R and R+ be as above. Let us describe the extended affine Weyl symmetry group

W(A(ll)) = (wo,w1,0 | W = w3 =02 =e,owpg = wio).



We now consider the reverse process: how, starting from the translation vector, to write
down the corresponding discrete Painlevé equation.
Let R and R+ be as above. Let us describe the extended affine Weyl symmetry group

W(A(ll)) = (wo,w1,0 | W = w3 =02 =e,owpg = wio).

Recall:
1 1
ap=2Hq+Hp —E1—E2—E3—E4—E5 — &6
c—=
[eT) aq alz’Hp_€7_£87



We now consider the reverse process: how, starting from the translation vector, to write
down the corresponding discrete Painlevé equation.
Let R and R+ be as above. Let us describe the extended affine Weyl symmetry group

W(A(ll)) = (wo,w1,0 | W = w3 =02 =e,owpg = wio).

Recall:
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We now consider the reverse process: how, starting from the translation vector, to write
down the corresponding discrete Painlevé equation.
Let R and R+ be as above. Let us describe the extended affine Weyl symmetry group

W(A(ll)) = (wo,w1,0 | W = w3 =02 =e,owpg = wio).

Recall:
L ! a0 =2Hq+Hp—E1—E2—E3—-E4—E5— &6
(o) [e51 alz’Hp_€7_£87
We have

e wy is a reflection in ap, wo(C) = C + (o ® C)ag, wo : (a, 1) — (—ao, a1 + 2a0);



The Extended Affine Weyl Group W(A(ll))

We now consider the reverse process: how, starting from the translation vector, to write
down the corresponding discrete Painlevé equation.
Let R and R be as above. Let us describe the extended affine Weyl symmetry group

W(A(ll)) = (wo,w1,0 | W = w3 =02 =e,owpg = wio).

Recall:
1 1 ag =2Hq+Hp —E1—E2—E3—E4—E5 — &6
[e7s) (e5] a] = Hp - 57 — 587
‘We have

@ wpo is a reflection in ag, wo(C) = C + (ap ® C)avg, wo : (a0, a1) — (—ao, a1 + 2a0);
e wi is a reflection in a1, wi1(C) =C + (a1 @ C)ar, w1 : (ap, 1) = (o + 21, —a1);
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The Extended Affine Weyl Group W(A(ll))

We now consider the reverse process: how, starting from the translation vector, to write
down the corresponding discrete Painlevé equation.
Let R and R be as above. Let us describe the extended affine Weyl symmetry group

W(A(ll)) = (wo,w1,0 | W = w3 =02 =e,owpg = wio).

Recall:
1 1 ag =2Hq+Hp —E1—E2—E3—E4—E5 — &6
[e7s) (e5] a] = Hp - 57 — 587
‘We have

@ wpo is a reflection in ag, wo(C) = C + (ap ® C)avg, wo : (a0, a1) — (—ao, a1 + 2a0);
e wi is a reflection in a1, wi1(C) =C + (a1 @ C)ar, w1 : (ap, 1) = (o + 21, —a1);

e o is a permutation of g and a1, (C) can be computed, o : (ag, a1) — (a1, @1);
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The Extended Affine Weyl Group W(A(ll))

We now consider the reverse process: how, starting from the translation vector, to write
down the corresponding discrete Painlevé equation.
Let R and R be as above. Let us describe the extended affine Weyl symmetry group

W(A(ll)) = (wo,w1,0 | W = w3 =02 =e,owpg = wio).

Recall:
1 1 ag =2Hq+Hp —E1—E2—E3—E4—E5 — &6
[e7s) (e5] a] = Hp - 57 — 587
‘We have

@ wpo is a reflection in ag, wo(C) = C + (ap ® C)avg, wo : (a0, a1) — (—ao, a1 + 2a0);
e wi is a reflection in a1, wi1(C) =C + (a1 @ C)ar, w1 : (ap, 1) = (o + 21, —a1);
e o is a permutation of g and a1, (C) can be computed, o : (ag, a1) — (a1, @1);

Note that g« =cowg=wi00: (ag,a1)— (—a1,a0 + 2a1) = (ag, 1) + (-1, 1)(—-Kx).
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The Extended Affine Weyl Group W(A(ll))

We now consider the reverse process: how, starting from the translation vector, to write
down the corresponding discrete Painlevé equation.
Let R and R be as above. Let us describe the extended affine Weyl symmetry group

W(A(ll)) = (wo,w1,0 | W = w3 =02 =e,owpg = wio).

Recall:
1 1 ag =2Hq+Hp —E1—E2—E3—E4—E5 — &6
[e7s) (e5] a] = Hp - 57 — 587
‘We have

e wy is a reflection in ap, wo(C) = C + (o ® C)ao, wo : (a0, 1) — (—ao, a1 + 2a0);

e wi is a reflection in a1, wi1(C) =C + (a1 @ C)ar, w1 : (ap, 1) = (o + 21, —a1);

e o is a permutation of g and a1, (C) can be computed, o : (ag, a1) — (a1, @1);
Note that g« =cowg=wi00: (ag,a1)— (—a1,a0 + 2a1) = (ag, 1) + (-1, 1)(—-Kx).
Since «; is simpler, we consider wi. We get

Wl(Hq):Hq+Hp*57*58, W1(57)=’Hp758, W1(51)=5i, i#7,8.
wi(Hp) = Hp, wi1(€8) = Hp — E7.
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The Extended Affine Weyl Group W(A(ll))

We now consider the reverse process: how, starting from the translation vector, to write
down the corresponding discrete Painlevé equation.
Let R and R be as above. Let us describe the extended affine Weyl symmetry group

W(A(ll)) = (wo,w1,0 | W = w3 =02 =e,owpg = wio).

Recall:
1 1 ag =2Hq+Hp —E1—E2—E3—E4—E5 — &6
[e7s) (e5] a] = Hp - 57 — 587
‘We have

e wy is a reflection in ap, wo(C) = C + (o ® C)ao, wo : (a0, 1) — (—ao, a1 + 2a0);

e wi is a reflection in a1, wi1(C) =C + (a1 @ C)ar, w1 : (ap, 1) = (o + 21, —a1);

e o is a permutation of g and a1, (C) can be computed, o : (ag, a1) — (a1, @1);
Note that g« =cowg=wi00: (ag,a1)— (—a1,a0 + 2a1) = (ag, 1) + (-1, 1)(—-Kx).
Since «; is simpler, we consider wi. We get

Wl(Hq):Hq+Hp*57*58, W1(57)=’Hp758, W1(51)=5i, i#7,8.
wi(Hp) = Hp, wi1(€8) = Hp — E7.

What is the corresponding elementary bilinear transformation?
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For each generator g of W(A(ll)) we now want to construct a birational map
g : C x C — C x C such that, when extended to g : &}, — A};, the map g is an

isomorphism whose induces map ({[;g)* on Pic(X) coincides with g. We explain how to do it
for wi, since it is the simplest, and construct the underlying birational map ;.



From Reflections to Elementary Birational Transformations

For each generator g of W(A(ll)) we now want to construct a birational map

g : C x C — C x C such that, when extended to g : X}, = X}, the map g is an
isomorphism whose induces map (Jg)* on Pic(X) coincides with g. We explain how to do it
for wy, since it is the simplest, and construct the underlying birational map 1.

e Since wi is an involution, wl_l(Hq) =Hq+ Hp — E7 — &, i.e., q is a coordinate on a
one-dimensional linear system (pencil) of curves |Hq + Hp — E7 — Es|.
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From Reflections to Elementary Birational Transformations

For each generator g of W(A(ll)) we now want to construct a birational map
g : C x C — C x C such that, when extended to {/;g 1 X, — X, the map {Eg is an
isomorphism whose induces map (Jg)* on Pic(X) coincides with g. We explain how to do it
for wy, since it is the simplest, and construct the underlying birational map 1.
e Since wi is an involution, wl_l(Hq) =Hq+ Hp — E7 — &, i.e., q is a coordinate on a
one-dimensional linear system (pencil) of curves |Hq + Hp — E7 — Es|.

e This is a family of (1, 1)-curves (i.e., curves whose defining equations are linear in both q
and p) passing through the points p7 and pg (i.e., passing through the point
p7(Q = 0,p = 0) with the slope vg = p/Q = —b):

|Hq +Hp —E7 — Es| = {Aqp + Bq+ Cp+ D =0 or Ap + B + CpQ + DQ = 0}.
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From Reflections to Elementary Birational Transformations

For each generator g of W(Agl)) we now want to construct a birational map
g : C x C — C x C such that, when extended to {/;g 1 X, — X, the map {Eg is an
isomorphism whose induces map (Jg)* on Pic(X) coincides with g. We explain how to do it
for wy, since it is the simplest, and construct the underlying birational map 1.
e Since wi is an involution, wl_l(Hq) =Hq+ Hp — E7 — &, i.e., q is a coordinate on a
one-dimensional linear system (pencil) of curves |Hq + Hp — E7 — Es|.

e This is a family of (1, 1)-curves (i.e., curves whose defining equations are linear in both q
and p) passing through the points p7 and pg (i.e., passing through the point
p7(Q = 0,p = 0) with the slope vg = p/Q = —b):

[Hq + Hp — E7 — Es| = {Agp + Bq+ Cp+D =0 or Ap + B + CpQ + DQ = 0}.
e This curve passes through p7(Q = 0,p = 0) when B = 0. Rewriting the resulting
equation as A(p/Q) + Cp + D = 0 we see that it holds for @ = p =0 and p/Q = —b
when D = Ab. Thus,

[Hal = |Hq + Hp — E7 — Es| = {A(ap + b) + Cp = 0}.
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From Reflections to Elementary Birational Transformations

For each generator g of W(Agl)) we now want to construct a birational map
g : C x C — C x C such that, when extended to g : X}, = X}, the map g is an
isomorphism whose induces map (Jg)* on Pic(X) coincides with g. We explain how to do it
for wy, since it is the simplest, and construct the underlying birational map 1.
e Since wi is an involution, wl_l(Hq) =Hq+ Hp — E7 — &, i.e., q is a coordinate on a
one-dimensional linear system (pencil) of curves |Hq + Hp — E7 — Es|-
e This is a family of (1, 1)-curves (i.e., curves whose defining equations are linear in both q

and p) passing through the points p7 and pg (i.e., passing through the point
p7(Q = 0,p = 0) with the slope vg = p/Q = —b):

[Hq + Hp — E7 — E8] = {Agp+Bq+ Cp+D =0 or Ap + B+ CpQ + DQ = 0}.

e This curve passes through p7(Q = 0,p = 0) when B = 0. Rewriting the resulting
equation as A(p/Q) + Cp + D = 0 we see that it holds for @ = p =0 and p/Q = —b
when D = Ab. Thus,

[Hal = |Hq + Hp — E7 — Es| = {A(ap + b) + Cp = 0}.

e A coordinate @ on this pencil can be taken to be —C/A; i.e., it’s value at a point (qo, po)

___qopo+b

isq= ———
Po

. However, this coordinate is defined only up to Mobius transformations.
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From Reflections to Elementary Birational Transformations

For each generator g of W(Agl)) we now want to construct a birational map

thg

C x C — C x C such that, when extended to {/;g 1 X, — X, the map {Eg is an

isomorphism whose induces map (Jg)* on Pic(X) coincides with g. We explain how to do it
for wy, since it is the simplest, and construct the underlying birational map 1.

Since wj is an involution, wl_l(Hq) =Hq+ Hp — E7 — &g, L.e,, q is a coordinate on a
one-dimensional linear system (pencil) of curves |Hq + Hp — E7 — Es|.

This is a family of (1, 1)-curves (i.e., curves whose defining equations are linear in both q
and p) passing through the points p7 and pg (i.e., passing through the point

p7(Q = 0,p = 0) with the slope vg = p/Q = —b):

|Hq +Hp — E7 —E] = {Aqp +Bq+ Cp+D =0 or Ap+ B + CpQ + DQ = 0}.

This curve passes through p7(Q = 0,p = 0) when B = 0. Rewriting the resulting
equation as A(p/Q) + Cp + D = 0 we see that it holds for @ = p =0 and p/Q = —b
when D = Ab. Thus,

[Hal = |Hq + Hp — E7 — Es| = {A(ap + b) + Cp = 0}.

A coordinate g on this pencil can be taken to be —C/A; i.e., it’s value at a point (qo, po)

___qopo+b

isq= ———
Po

Similarly, from |Hg| = |Hp|, we see that p = p, also up to Mobius transformations.

. However, this coordinate is defined only up to Mobius transformations.
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o Thus, the mapping 1 is given by

q_A(qp+b)+Bp 5- XptL
C(ap +b) + Dp’ Mp + N
for some constants A,...N to be determined.



From Reflections to Elementary Birational Transformations

o Thus, the mapping 1 is given by

Q,A(qp+b)+Bp 5- XptL
C(ap +b) + Dp’ Mp + N
for some constants A,...N to be determined.

e From wi(&1) = &, we see that we want to have Y1(p1) = P1, p1(oo,00), i.e.

Q7C(1+bQP)+DQP _C_, p_M+np M
T A(14+BQP)+bQPlg=P=0 A T K+LPlg=P-0 K

0,

A b)+ B
so C =M = 0. Without the loss of generality we can put g = M

p b
p = Kp + L. Applying the same argument to the other points p; we get @ = q+ b/p,
P = p, which is exactly the elementary Béacklund transformation s; ¢ =s.
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From Reflections to Elementary Birational Transformations

o Thus, the mapping 1 is given by

Q,A(qp+b)+Bp 5- XptL
C(ap +b) + Dp’ Mp + N
for some constants A,...N to be determined.

e From wi(&1) = &, we see that we want to have Y1(p1) = P1, p1(oo,00), i.e.

C(1 + bQP) + DQP C

_C M + NP M
A(1+BQP)+bQPlo=P=0 A

P = =— =0,
K+ LP IQ=P=0 K

Q=

Algp +b) + Bp

)

so C =M = 0. Without the loss of generality we can put g =

1%
p = Kp + L. Applying the same argument to the other points p; we get @ = q+ b/p,
P = p, which is exactly the elementary Béacklund transformation s; ¢ =s.
o We can also see the action on parameters. From w1 (H, — £7) = &5 we see that the line
=0 (w_hose proper transform is H, — E7), when written in coordinates iz = Q and
V7 = p/Q = Qp, should collapse to the point pg(0, —b). We get

@5 =0 = (L) | =0.5)=(0.-D),

and so b = —b, as it should be.
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From Reflections to Elementary Birational Transformations

o Thus, the mapping 1 is given by

Q,A(qp+b)+Bp 5- XptL
C(ap +b) + Dp’ Mp + N
for some constants A,...N to be determined.

e From wi(&1) = &, we see that we want to have Y1(p1) = P1, p1(oo,00), i.e.

Q7C(1+bQP)+DQP _C_, p_M+np _M_,
T A(14+BQP)+bQPlg=P=0 A T K+LPlg=P=0 K

Algp +b) + Bp

)

so C =M = 0. Without the loss of generality we can put g =
1%

p = Kp + L. Applying the same argument to the other points p; we get @ = q+ b/p,

P = p, which is exactly the elementary Béacklund transformation s; ¢ =s.

o We can also see the action on parameters. From w1 (H, — £7) = &5 we see that the line
=0 (w_hose proper transform is H, — E7), when written in coordinates iz = Q and
V7 = p/Q = Qp, should collapse to the point pg(0, —b). We get

p
qp+b

@5 =0 = (L) | =0.5)=(0.-D),

and so b = —b, as it should be.

@ In the same way we can show that 19, = r, and hence g = rsr.

Anton Dzhamay (UNC) Discrete Painlevé Equations July 28, 2017 31 / 61



Are the following two equations: Same? Different? Equivalent? Related?



Application of the Geometric Approach

Are the following two equations: Same? Different? Equivalent? Related?

(= B)(ox(61 — 62) + (1 + 03) (x(y — 63) + (65 — 63)))
(o= B)x(y — 02) + (65 — 02)y) — (6} + 1)(65 — 62)
(x = B)(y(x+ 65 — 63) — 63x)
(85 — 67)

il
Il

<

where 0% and k; are some parameters and

olx. v) — 0% ) = ((y+93)r1+r2)
N = "arer e 0 PN arner— e

r1(x,y) = k1k2 + Kaks + ka1 — (y — 03)(x — 63) — 05(y + 63) — 01 (65 + 65 + 67),
ra(x,y) = k1k2k3 + 01 ((y — 67)(x — 63) + 65(y + 63)).
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Application of the Geometric Approach

Are the following two equations: Same? Different? Equivalent? Related?

(o = B)(ox(81 — 6F) + (1 + 63)(x(y — 63) + y(65 — 63)))

%=
=BGy — 09) + (6§ — 03)) — o6} + 1)(85 — 03) "
g — (2= B)(y(x+ 6 — 63) — 0Fx) ’
(65 — 63)
where 02 and k; are some parameters and
x(03rq+r2)
) (le + x+68 —62 ) B(x.y) = ((y+0§)r1 +r2)
(x+y)O7 —67) (x+y)(01 —67) "
r1(x,y) = m1k2 + Kaks + Kar1 — (v — 0F)(x — 03) — 05 (v + 03) — 01(65 + 65 + 67),
ra(x,y) = r1rzks + 01 ((y — 67)(x — 63) + 05(y + 63))-
= b b b b
(f + g)(F + g) = EFP1)(EFD2)(E + bs)(g + ba)
(g —bs —d)(g —be — 9) @)
= = _ (f — b1)(f — b2)(f — b3)(f — by)
f+g)(f+g) = = =
(f+8)(f +8) @+ b7 0)(T—bs )
where by, ...,bg are some parameters and 6 = by + --- + bg.
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Both equations are in fact very natural expressions (in their respective settings, of course) of
difference Painlevé equations of type d-P (A(Ql)*> with symmetry W (Eg”) , and so a

question about the relationship between the them is a very reasonable one.
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Both equations are in fact very natural expressions (in their respective settings, of course) of
difference Painlevé equations of type d-P (A(Ql)*> with symmetry W (Eg”) , and so a
question about the relationship between the them is a very reasonable one.

e The first equation describes one of the simplest elementary Schlesinger transformation of
a Fuchsian system (T. Takenawa, A.D).
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Both equations are in fact very natural expressions (in their respective settings, of course) of
difference Painlevé equations of type d-P (A(Ql)*> with symmetry W (Eg”) , and so a
question about the relationship between the them is a very reasonable one.
e The first equation describes one of the simplest elementary Schlesinger transformation of
a Fuchsian system (T. Takenawa, A.D).
o The second equation is obtained by the application of the singularity confinement
criterion to a deautonomization of a QRT map (B. Grammaticos, A. Ramani, Y. Ohta).
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Both equations are in fact very natural expressions (in their respective settings, of course) of
difference Painlevé equations of type d-P (A(Ql)*> with symmetry W (Eg”) , and so a
question about the relationship between the them is a very reasonable one.
e The first equation describes one of the simplest elementary Schlesinger transformation of
a Fuchsian system (T. Takenawa, A.D).
o The second equation is obtained by the application of the singularity confinement
criterion to a deautonomization of a QRT map (B. Grammaticos, A. Ramani, Y. Ohta).

There are infinitely many discrete Painlevé equations of the same type, but some of those
equations are simpler and more “natural” than others, it’s important to identify such
equations.
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Both equations are in fact very natural expressions (in their respective settings, of course) of

difference Painlevé equations of type d-P (A(Ql)*> with symmetry W (Eg”) , and so a

question about the relationship between the them is a very reasonable one.
e The first equation describes one of the simplest elementary Schlesinger transformation of
a Fuchsian system (T. Takenawa, A.D).
o The second equation is obtained by the application of the singularity confinement
criterion to a deautonomization of a QRT map (B. Grammaticos, A. Ramani, Y. Ohta).

There are infinitely many discrete Painlevé equations of the same type, but some of those
equations are simpler and more “natural” than others, it’s important to identify such
equations.

According to the Sakai’s classification scheme, a discrete Painlevé equation is a birational
map of a complex projective plane that corresponds to a translation element in the symmetry
sub-lattice of a Picard lattice of a certain rational algebraic surface, known as the Okamoto
Space of Initial Conditions, that is obtained when we resolve the indeterminacies of the
equation by using a blowup procedure. Our approach is to exploit the structure of the

extended affine Weyl symmetry group W (Eél)> of the surface.
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Both equations are in fact very natural expressions (in their respective settings, of course) of
difference Painlevé equations of type d-P (A(Ql)*> with symmetry W (Eg”) , and so a
question about the relationship between the them is a very reasonable one.
e The first equation describes one of the simplest elementary Schlesinger transformation of
a Fuchsian system (T. Takenawa, A.D).
o The second equation is obtained by the application of the singularity confinement
criterion to a deautonomization of a QRT map (B. Grammaticos, A. Ramani, Y. Ohta).

There are infinitely many discrete Painlevé equations of the same type, but some of those
equations are simpler and more “natural” than others, it’s important to identify such
equations.

According to the Sakai’s classification scheme, a discrete Painlevé equation is a birational
map of a complex projective plane that corresponds to a translation element in the symmetry
sub-lattice of a Picard lattice of a certain rational algebraic surface, known as the Okamoto
Space of Initial Conditions, that is obtained when we resolve the indeterminacies of the
equation by using a blowup procedure. Our approach is to exploit the structure of the

extended affine Weyl symmetry group W (Eél)) of the surface.

Main result: These two equations are equivalent through an explicit change of variables
transforming one equation into the other:

e X6 —07) + (9 + K1) + (65 + K1)(0g + 05 + 61 + 2k1)
v+ 0%+ k1
 x(y = 63— 01— w1) + y(8 — 63) + (63 + w1 )(6d + 63 + 21)
xfag — K1

g
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Let us start by understanding the structure of a generalized Halphen surface of type A(QI)*.



Let us start by understanding the structure of a generalized Halphen surface of type A(;)*.
Such a surface X is obtained by blowing up P! x P! at 8 points, and the type corresponds to
the intersection structure of the irreducible components of the anti-canonical divisor —Cx in

8
the Picard Lattice Pic(X) = ZH; @D ZHs P & Z&;,
i=1



Let us start by understanding the structure of a generalized Halphen surface of type A(;)*.
Such a surface X is obtained by blowing up P! x P! at 8 points, and the type corresponds to
the intersection structure of the irreducible components of the anti-canonical divisor —Cx in

8
the Picard Lattice Pic(X) = ZH ZH 7&;,
e Picard Lattice Pic(X) f@ g@ii}l
—Kx =2Hs +2Hg —E1— - —E8 = E m;D;.



Canonical Model of the Okamoto Surface of Type Agl)*

Let us start by understanding the structure of a generalized Halphen surface of type A(Zl)*.
Such a surface X is obtained by blowing up P! x P! at 8 points, and the type corresponds to
the intersection structure of the irreducible components of the anti-canonical divisor —x in

the Picard Lattice Pic(X) = ZH; @D ZH, ED @ 7.E;,
—Kx—2Hf+2Hg—51 “._ngzmipl
i

Dynkin diagram A(zl) and the anti-canonical divisor decomposition

Dy
—2 1 1
1 -2 1 —Kx = Do + D1+ D2
1 1 —2
DO Dl
Dynkin diagram A(Ql) its Cartan matrix —Kx decomposition
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Canonical Model of the Okamoto Surface of Type Agl)*

. S : S : S (
Let us start by understanding the structure of a generalized Halphen surface of type Aj;

)*

Such a surface X is obtained by blowing up P! x P! at 8 points, and the type corresponds to
the intersection structure of the irreducible components of the anti-canonical divisor —x in

the Picard Lattice Pic(X) = ZH; @D ZH, ED @ 7.E;,

—icx_2Hf+2Hg—51—~-—Ss:ZmiDl

Dynkin diagram A(zl) and the anti-canonical divisor decomposition

Do
-2 1 1
1 -2 1
1 1 -2
DO Dl
Dynkin diagram A(Ql) its Cartan matrix

Without loss of generality, we can put
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Canonical Model of the Okamoto Surface of Type Agl)*

. S : S : S (
Let us start by understanding the structure of a generalized Halphen surface of type Aj;

)*

Such a surface X is obtained by blowing up P! x P! at 8 points, and the type corresponds to
the intersection structure of the irreducible components of the anti-canonical divisor —x in

the Picard Lattice Pic(X) = ZH; @D ZH, EB @ 7.E;,
—Kx—2Hf+2Hg—51 "‘_88:Zmipl
i

Dynkin diagram A(Ql) and the anti-canonical divisor decomposition

Dy
—2 1 1
1 -2 1 —Kx = Do + D1+ D2
1 1 —2
DO Dl
Dynkin diagram A(Ql) its Cartan matrix —Kx decomposition

Without loss of generality, we can put

D0:Hf+7'[g—51—52—53—54
D1 =He—E5 — &g
Do =Hg — E7 — Es.
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There are, however, two different geometric configurations related to the algebraic
intersection structure given by this Dynkin diagram:



Canonical Model of the Okamoto Surface of Type Agl)*

There are, however, two different geometric configurations related to the algebraic
intersection structure given by this Dynkin diagram:

Do

Do Dy

Dynkin diagram A(Ql) A(zl) surface (multiplicative) A(Ql)* surface (additive)
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Canonical Model of the Okamoto Surface of Type Agl)*

There are, however, two different geometric configurations related to the algebraic
intersection structure given by this Dynkin diagram:

Do

Do Dy

)

Dynkin diagram A(Q1 A(zl) surface (multiplicative) A(zl)* surface (additive)

(1)

We are interested in the additive dynamic given by Ay’", so we want all of the irreducible
components of the anti-canonical divisor to intersect at one point.
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Canonical Model of the Okamoto Surface of Type Agl)*

There are, however, two different geometric configurations related to the algebraic
intersection structure given by this Dynkin diagram:

Do

Do Dy

)

Dynkin diagram A(Q1 A(zl) surface (multiplicative) A(zl)* surface (additive)

(1)

We are interested in the additive dynamic given by Ay’", so we want all of the irreducible
components of the anti-canonical divisor to intersect at one point.

Again, without the loss of generality (i.e., acting by affine transformations on each of the two
P! factors) we can assume that the component D; = Hy — E5 — Eg under the blowing down
map projects to the line f = co (and so there are two blowup points ps(oo, bs) and ps(co, bs)
on that line), the component Dy = Hg — E7 — Eg projects to the line g = co with points
p7(—bs, 00) and pg(—bs, o0), and the component Do = Hf + Hg — E; — Eg — Ez — Ey4
projects to the line f +¢g = 0.
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Thus, we get the following geometric realization of a (family of) surface(s) X}, of type A(21)*:



Canonical Model of the Okamoto Surface of Type Agl)*

Thus, we get the following geometric realization of a (family of) surface(s) X} of type A

= 00
g=0
Hf+Hg

(1)*.
5

Anton Dzhamay (UNC)
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f=0 f=o0
=f4+g=0
p7(—b7,00) ps(—bs,OO - Ez/ Eg/
° = g
/g
pa(ba, —bs)
[ pg(OO,bs) ES
p3(bz, —bs) /{6
€-------- E
p2(b2, —b2)
¢ ps(o0, bs) o /'{5
pi(b1, —b1)
Hg
H, He Hf +Hg —E1 —Ez; —E3 —E4 Hf —E; —Eg
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Canonical Model of the Okamoto Surface of Type Agl)*

Thus, we get the following geometric realization of a (family of) surface(s) &} of type A(21)*:
f=0 f=o00
( ) oot h=f+g=0
p7(=b7,00) ps(—bs, o0 E E
= o0 7= i = i Hg Z/ §/
/ / E Hg — E7 — Es
p4(bs, —bs)
[ ] pg(OO,bs) Es
p3(bs, —bs) /{6
(b ba) D 5
p2(b2, —Db2
® p5(co, bs) B, /{5
p1(b1, —b1)
g=0 Hg
Hf+Hg H He Hf+Hg—E1—E2—E3—E4 Hi — E5 — Eg

Note that the lines in the above configuration form a pole divisor of the symplectic form
_dfAdg  dF Adg df AdG  dFAAG  dhAdg

T (f+g) F(l+Fg) GEG+1) (F+G) h
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Canonical Model of the Okamoto Surface of Type Agl)*

Thus, we get the following geometric realization of a (family of) surface(s) &} of type A(21)*:
f=0 f=o00
( ) oot h=f+g=0
p7(=b7,00) ps(—bs, o0 E E
= o0 7= i = i Hg Z/ §/
/ / E Hg — E7 — Es
p4(bs, —bs)
[ ] pg(OO,bs) Es
p3(bs, —bs) /{6
(b ba) D 5
p2(b2, —Db2
® p5(co, bs) B, /{5
p1(b1, —b1)
g=0 Hg
Hf+Hg H He Hf+Hg—E1—E2—E3—E4 Hi — E5 — Eg

Note that the lines in the above configuration form a pole divisor of the symplectic form
_dfAdg  dF Adg df AdG  dFAAG  dhAdg

T (f+g)  FQ+Fg)  G(EIG+1) (F+Q) h
There is still a two-parameter family of transformations preserving this configuration:

b1 bz bz by abi1 +8 ab2+ 3 abz+ B abs+ S, _
<b5 b by bg'f’g)w<ab5—,8 abs— B aby—B abg—pgfthes 6)"17&0'
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A more invariant way to parameterize the surface is to use the so-called Period Map. For
that we first need to define the symmetry sublattice.



The Symmetry Group and the Symmetry Sub-Lattice

A more invariant way to parameterize the surface is to use the so-called Period Map. For
that we first need to define the symmetry sublattice.

Symmetry sublattice Q < Pic(X)

Q = (Spanz{Do, D1, D2})* = Q ((A(zl))l) = Spang{ap, a1, a2, 3,04, 05,06} = Q (Egl)> :

where the simple roots «; are given by

ag
ag = E3 — &y, oy = E7 — &g,
s o1 =& — &3, as = Hg — &1 — &5,
ag = &1 — &, ag = E5 — &
agz =He — & — &7,
O O O O O
ao o1 a2 a3 oy

Note also that § = — Ky = ag + 2a1 + 3a2 + 2a3 + ag4 + 2a5 + ag.

Anton Dzhamay (UNC) Discrete Painlevé Equations July 28, 2017 37 / 61



The Symmetry Group and the Symmetry Sub-Lattice

A more invariant way to parameterize the surface is to use the so-called Period Map. For
that we first need to define the symmetry sublattice.

Symmetry sublattice Q < Pic(X)

Q = (Spanz{Do, D1, D2})* = Q ((A(zl))l) = Spang{ap, a1, a2, 3,04, 05,06} = Q (Egl)> :

where the simple roots «; are given by

ag
ag = E3 — &y, oy = E7 — &g,
s o1 =& — &3, as = Hg — &1 — &5,
ag = &1 — &, ag = E5 — &
agz =He — & — &7,
O O O O O
ao o1 a2 a3 oy

Note also that § = — Ky = ag + 2a1 + 3a2 + 2a3 + ag4 + 2a5 + ag.
The period mapping is the map

x:Q—=C,  x(a)=a
defined on the simple roots and then extended by the linearity.
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Qi 1 P Q
— 17 _ 01y — il w i
e =x(El-e= [ oof « g,
Qi _dfAdg 1
:/Pi resp, W, w= fte oo o



The Period Map

Qi 1
O =y ([Cl] =[O :/ 77{ P; Qi
x(ai) = x (IC;] = [CT]) e Dy
/Qa df A dg
= resp, w, w =
P; f+g c? cl

Examples of the Period Map computations

p7(—b7,00) ps(—bs,o0)

pa(ba, —ba)
p3(b3, —b3) p5 (00, bs)
p2(b2, —b2)
P b 7_b
1(b1, =b1) Pe (00, be)
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The Period Map

Qi
X =x(el - = [ 5o f

/Qa df A dg
= resp, w, w =
P D f+g

Examples of the Period Map computations

o oo =E&3 — & = [E3] — [E4],
Dy =Dp={h=f+g=0}

_dfAdg dhAdg

" f+g  h '’

—bg
X(aw) = [ dg=[bi—by = ao]
—by

resp—ow = dg

Anton Dzhamay (UNC)
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p7(—b7,00) ps(—bs,o0)

pa(ba, —ba)
p3(b3, —b3) p5 (00, bs)
p2(b2, —b2)
P b 7_b
1(b1, =b1) Pe (00, be)
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The Period Map

Qi 1
O =y ([Cl] =[O :/ 77{ P; Qi
xe)=x(C-C) = | “5o¢ @ p,
/Qa df A dg
= resp, w, w =
P; f+g c? cl

Examples of the Period Map computations

o oo =E&3 — & = [E3] — [E4],
Dy =Do={h=f+g=0}

Hf — Eq
oo dfndg _dnndg (—br.00) |ps(—bs, 00)
P h s = p7 7 P8 8
—bg
o= [ ae =[] |
—by p3(b
o a3 =Hs— & — Er = [He — E1] — [E7], p2 (b2, —
Dy =Dz = {g = o0} = {G =0} pl(bl,—by
df Adg df AdG
w= =— , resg—ow = df

by
o) = [ ot = (=]
b7
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ag = by — b3, ag = by + by, ag = bg — bs,

a1 = bz — ba, a4 = bg — bz,
ag = ba — by, a5 = by + bs.



ag = by — b3, ag = by + by, ag = bg — bs,
a; = bz — ba, a4 = bg — bz,
ag = ba — by, a5 = by + bs.

b1 bz bs 104_f _ b1 b1 + ag b1 + a1 + a2 b1+ao+a1+a2,f
bs bg by bg '8 a5 —b1  as+ag —bs a3 — by ag+ag—by '8)>

and so we see that by is one free parameter (translation of the origin). To fix the global
scaling parameter we usually normalize

x(0) = x(—Kx) = x(ao + 2a1 + 3az + 2a3 + a4 + 2a5 + ag)
= b1 + b2 4+ bz + by + bs 4+ bg + b7y + bs.



The Period Map

The Period Map, a; = x(a;) are the root variables

ag = by — bg, az = by + bz, ag = bg — bs,
a; = bg — ba, a4 = bg — by,
ag = by — by, a5 = b1 + bs.

Parameterization by the root variables a;
b1 bz bs b4_f _ b1 b1 + as b1 +a1+a2 b1 +ag+ar +az
bs bg b7y bg’ '8 as — by as+ag— Dby a3 — by az+aqg —by ' &)

and so we see that by is one free parameter (translation of the origin). To fix the global
scaling parameter we usually normalize

x(6) = x(=Kx) = x(ao + 2a1 + 3az + 2a3 + a4 + 2as5 + ag)
= by + b2 + b3 + by + bs + bg + b7 + bs.
The usual normalization is to put x(d) = 1, and one can also ask the same for by. We will not

do that, but we will require that, when resolving the normalization ambiguity, both x(d) and
by are fixed — this ensures the group structure on the level of elementary birational maps.
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The next step in understanding the structure of difference Painlevé equations of type

d-P (A(;)*) is to describe the realization of the symmetry group in terms of elementary
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The full extended Weyl symmetry group W (Eél)) is a semi-direct product of



The Extended Affine Weyl Symmetry Group W (Eg”)

The next step in understanding the structure of difference Painlevé equations of type
d-P (A(Ql)*) is to describe the realization of the symmetry group in terms of elementary

bilinear maps.
W (E(Y) = Aut(E()) x W(ED)

The full extended Weyl symmetry group W (Eg)) is a semi-direct product of
e The affine Weyl symmetry group of reflections w; = wa,

wl—e
ag

o o
1)y _ Wi O Wj = Wj O Wj when . .
W(Eg”’) = ( wo,...,Ws i @ as

wjowjow; =wjowjow; when . .
L ap a1 a2 a3 Q4
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The Extended Affine Weyl Symmetry Group W (Eé1)>

The next step in understanding the structure of difference Painlevé equations of type
d-P (A(Ql)*) is to describe the realization of the symmetry group in terms of elementary

bilinear maps.
W (E(Y) = Aut(E()) x W(ED)

The full extended Weyl symmetry group W (Eg)) is a semi-direct product of
e The affine Weyl symmetry group of reflections w; = wa,

wl—e
ag

o o
1)y _ Wi O Wj = Wj O Wj when . .
W(Eg”’) = ( wo,...,Ws i @ as

wjowjow; =wjowjow; when . .
L ap a1 a2 a3 Q4

o The finite group of Dynkin diagram automorphisms

Aut (E(Gl)) ~ Aut (A(;)) ~ D3,

where D3 = {e, mg, m1, mg, 1,12} = (mo,r | m3 =13 = e, mgr = r2mg) is the usual
dihedral group of the symmetries of a triangle.
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Reflections w; are induced by the following elementary birational mappings (also denoted by
wi) on the family X}, fixing by and x(6) (we put b;...x = bj +---+ by, e.g., bi2 = b1 +bg and
SO on)




Reflections w; are induced by the following elementary birational mappings (also denoted by
wi) on the family X}, fixing by and x(6) (we put b;...x = bj +---+ by, e.g., bi2 = b1 +bg and
SO on)

b1 b2 bz by f 'ﬂ) b1 bz bsg bz f
bs bs by bg'g bs be by bg'g)’




Reflections w; are induced by the following elementary birational mappings (also denoted by
wi) on the family X}, fixing by and x(6) (we put b;...x = bj +---+ by, e.g., bi2 = b1 +bg and
SO on)

b1 b2 bz by f 'ﬂ) b1 bz bsg bz f
bs bs by bg'g bs be by bg'g)’

bi by by by f) wi (b bg by byf
bs bs by bg'g bs be by bg'g)’
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The Affine Weyl Group W(Egl) )

Theorem

Reflections w; are induced by the following elementary birational mappings (also denoted by
wj) on the family X}, fixing by and x(6) (we put b;...x = b; + -+ + by, e.g., bia = by + bz and
SO on)

bi bz bg by f) wo (b1 bz by by f
bs b br bs'g bs bs by bg'g)’

bi bz by by f) wi (b1 by by by f
bs b by bs'g bs beg by bsg'g)’

b1 bz bz bsg f) w by bi1 —bz2  big —bz big —bz f4+ by —b2
bs bg by bs'g bsz —b1  be2 —b1  bra —b1 bga—bi'g—b1 +b’ )’
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The Affine Weyl Group W(Egl) )

Theorem

Reflections w; are induced by the following elementary birational mappings (also denoted by
wj) on the family X}, fixing by and x(6) (we put b;...x = b; + -+ + by, e.g., bia = by + bz and
SO on)

bi bz bg by f) wo (b1 bz by by f
bs bg bz bs'g bs bs by bg'g)’

b1 bo bs S, b1 bz bz by f
bs bg by bg g bs bs b7 bs'g)’
b1 bz bz wo by b1y —ba  biz —ba big —ba f+ by —bs
bs bg b bg g bs2 —b1  bez —b1  bya —bi  bgz —bi’'g — by + by’
b1 by bz w3 b217 bz17 bai7 f 4 b7

(b5 be b7z bg’ g) — <b5 —bi17  bg —bi7’ W —b1)’
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The Affine Weyl Group W(Egl) )

Theorem

Reflections w; are induced by the following elementary birational mappings (also denoted by
wj) on the family X}, fixing by and x(6) (we put b;...x = b; + -+ + by, e.g., bia = by + bz and

SO on)
by bz bz
bs bg bz
by b2 bz
bs bg Dby
b1 bz Dbs
bs bg by
by bz bz
bs bg bz
by b2 bz
bs bs bz

Anton Dzhamay

by f
bs'g

(UNC)

wo, (b1 bz bsg bz f
bs bg by bsg'g)’
wi (b1 bz b2 by f
H ; b
<b5 be bz bs g)
by bi1 —bz2  big —bz big —bz f4+ by —b2
bsa —b1  bgz —b1  bra —b1  bga —bi'g—b1 4+ b’ )’

wz (b1 b2i7  bzir bai7 f+b17
— 5 9
<b5 bg  —bii7 bg —bi7 7@”;1_)](5;1)7) — by

ws (b1 ba bz by f
— ) ’
(bs bs bg bz g)
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The Affine Weyl Group W(Egl) )

Theorem

Reflections w; are induced by the following elementary birational mappings (also denoted by
wj) on the family X}, fixing by and x(6) (we put b;...x = b; + -+ + by, e.g., bia = by + bz and

SO on)
b1 bz b3
bs bs bz
by bz bz
bs be b7
b1 bz b3
bs be b7
b1 bz b3
bs bs bz
by bz bz
bs bs b7
by bz bz
bs be b7

Anton Dzhamay

by f
bs'g

(UNC)

wo. (b1 bz bs bz f
bs bg by bsg'g)’
b1 by by bgf
H ; b
<b5 be bz bs g)
by bi1 —bz2  big —bz big —bz f4+ by —b2
bsa —b1  bgz —b1  bra —b1  bga —bi'g—b1 4+ b’ )’

by b1z bsiz bai7 f+b17

bs be —biiz bsg —bi7’ 7@”;1_)](5;1)7) —b1 )’
b
b

1 b2 bz by f
5 be bs br'g)’

f—b1)(g—bs
ws b1 ba21s b31s  bais. %(f") + by
— ; g+by y
—b11s be —bis by bg g —Dbis
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The Affine Weyl Group W(Egl) )

Theorem

Reflections w; are induced by the following elementary birational mappings (also denoted by
wj) on the family X}, fixing by and x(6) (we put b;...x = b; + -+ + by, e.g., bia = by + bz and
SO on)

by by bz by f\ wo (b1 by by bg f
( )'_><b5 be bz bs'g)’

w1 b1 b3 bz b4_f
H<b5 bs by b8'g>’

wo by bi1 —bz2  big —bz big —bz f4+ by —b2
bsa —b1  bgz —b1  bra —b1  bga —bi'g—b1 4+ b’ )’

by b1z bsiz bai7 f+b17

bs be —biiz bsg —bi7’ 7@”;1_)](5;1)7) —b1 )’
b
b

1 b2 bz by f
5 be bs br'g)’

5, by ba1s b3is  bais, % + b1
—bi1s b —bis bz  bs’ g —bis ’

we, (b1 b2 bz by f
'—><b6 bs bz bs'g)'
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The Automorphism Group Aut(Agl)) ~ Aut(Eél)) ~ D3

Theorem

The acton of the automorphisms on the Picard lattice Pic(X), the symmetry sub-lattice
Spang{a;} and the surface sub-lattice Span;{D;} is given by:

mo = (D1D2) = (azas)(csas),
He > Hg, E1—E1, E3—>E3, & &7, &7 —Es,
He — He, E2—E2, Es4— &4, & —E, &3 —Es;
m; = (DoD2) = (o )(cr03),
Hf—)Hf, &1 —>Hf—52, 53—>57, g5—>55, 57—>53,
Heg - He +Hg —E1— &2, E2—=He—&1, E1—E, & —+E&, Es— &
mz = (DoD1) = (awoas)(c1c5),

He > He +Hg —E1 —E2, & —Hg— &2, E3—E&5, & —E, Er— &,

He — He, E = Hg— &1, E1—E, & — &, Esz— Es;
r = (DoD1D2) = (xoasaa)(a1asas),
He — He, &1 > Hg — &2, E3—E, & &, & — &,

Hg = He+Hg —E1 — &2, E2 = Hg— &1, E1—E, & —E, Es— &
1? = (DeD2D1) = (pasas)(arasas),

He = He +Hg —E1—E2, &1 = He—E2, E3—=E7, & —E3, &7 — Es,

He — Hs, E > He— &1, E4—E, E6— &, Eg—E.

Anton Dzhamay (UNC) Discrete Painlevé Equations July 28, 2017 42 / 61



This is almost obvious from looking at the diagrams. For example, for mg we have



Sketch of the proof

This is almost obvious from looking at the diagrams. For example, for ma we have

Dy =Hg —E7— &g

Do=He+Hg —E1—E2—E3— &4 D1 =Ht—E — &
O as =& —&s

O az=Hf— & — &7

ag =E&1 — &g

as =Hg — &1 — &5 a; =& — &3

Oc6:55—56 060:53—54
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Sketch of the proof

This is almost obvious from looking at the diagrams. For example, for ma we have

Do=Hi+Hg —E1—E2—E3— &

a5 =Hg — &1 — &5
ag =E5 — &g
Hence, my is given by
He = He + Hg — E1 — E2,
Hg — Hg,

Anton Dzhamay (UNC)

&1
&

Dy =Hg —E7— &g

oo = &1

A)Hgfgz,
%Hgfgl,

Discrete Painlevé Equations

53 —)55,
54 —)56,

D1 =He—Es —Es

O as =& —&s

) az =He— &1 — &7

—&

a; =& — &3

ag =E3 — &4
Es — Es, Er — &q,

56 — 54,

July 28, 2017
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The Automorphism Group Aut(Agl)) ~ Aut(Eél)) ~ D3

Theorem

The automorphisms are given by the following elementary birational maps on the family A},
fixing by and x(6)

b1 ba bz by f 80, b1 bo bs bz —f
bs bz bs'g bs bs bs'—g/’
by bs my ba bi27 biag | bz —f
( b6 b7 b8 g) — < bG b3 — bio bg — b2’ w ’
by bz b3 my by ba bigs bigs, %
bs bg bz bs g bg —bi2 bs—bia by bg ' _—g—biy ’
b1 bz b3 N by ba bio7 b128; *%
bs bg bz b8 g bz —bi2 bs—bi2 bs be f —bio
by bz bs L2> by ba bi2s bize | g+ b2
bs bg br bs 5 br bs b3 —biz by — by —HEti2l=bibe
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The Automorphism Group Aut(Agl)) ~ Aut(Eél)) ~ D3

Theorem

The automorphisms are given by the following elementary birational maps on the family X},
fixing by and x(6)

b1 by by by f) mg (by bo by by —f
bs bz bs'g b7 bg bs bs' —g/’
bz b3z by f o, b1 ba bio7 biog b1z —f
be by bs'g bs bs bs—biz by— by’ Ei=bizlzbibz
by bz b3 b4; f m2, by ba bios b126; %
bs be by bg'g bg —bi2 bs—bia by bg —g —bia ’
b1 bz b3z by f N b bo bia7  bios. *%
bs bg by bg'g bs —bi2 bs—biz bs bg ’ f —bio ’
b1 ba bsg b4_ f )i by  be bi2s bi2g . g+ bi2
bs bs br bs'g br bs b3 —biz by — by —HEti2l=bibe

Proof is similar to the previous theorem. Notice that the group structure is preserved on the
level of the maps.

Anton Dzhamay (UNC) Discrete Painlevé Equations July 28, 2017 44 / 61



The extended affine Weyl group W(Eg)) is a semi-direct product of its normal subgroup
W(Eél)) < W(Eg)) and the subgroup of the diagram automorphisms Aut(Egl)),

W(ENM) = Aut(DLY) x w(DM).



The extended affine Weyl group W(Egl)) is a semi-direct product of its normal subgroup
W(Eg)) < W(Eg)) and the subgroup of the diagram automorphisms Aut(Egl)),

W(ENM) = Aut(DLY) x w(DM).

We have just described the group structure of W(Egl)) and Aut()Egl)) using generators and
1
).

relations, so it remains to give the action of Aut(Eg)) on W(Eé



The Semi-Direct Product Structure
The extended affine Weyl group W(Egl)) is a semi-direct product of its normal subgroup
W(Eg)) < W(E(ﬁl)) and the subgroup of the diagram automorphisms Aut(Eél))7

W(ENM) = Aut(DLY) x w(DM).

We have just described the group structure of W(Eél)) and Aut(E((jl)) using generators and
relations, so it remains to give the action of Aut(Egl)) on W(E(Gl)).

But elements of Aut(Eg)) act as permutations of the simple roots «;, and so the action is
just the corresponding permutation of the corresponding reflections, otwaiat_l = Wi(a;)
where t is the permutation of a;’s corresponding to ot.
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The Semi-Direct Product Structure
The extended affine Weyl group W(Egl)) is a semi-direct product of its normal subgroup
W(Eg)) < W(E(ﬁl)) and the subgroup of the diagram automorphisms Aut(Eél))7

W(ENM) = Aut(DLY) x w(DM).

We have just described the group structure of W(Eél)) and Aut(E((jl)) using generators and
relations, so it remains to give the action of Aut(Egl)) on W(E(Gl)).

But elements of Aut(Eg)) act as permutations of the simple roots «;, and so the action is
just the corresponding permutation of the corresponding reflections, otwaiat_l = Wi(a;)
where t is the permutation of a;’s corresponding to ot.

Example: 01 = om,; = (apas)(ara3z) acts as

O1W001 = W4, O1W40] = Wo, O1W10] = W3, O1W30] = W1, o1wijo1p = w;  otherwise .
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Finally, we need an algorithm for representing a translation element of W(Eé) as a
composition of the generators of the group, then the corresponding discrete Painlevé
equation can be written as a composition of elementary birational maps.



Finally, we need an algorithm for representing a translation element of W(Eé) as a
composition of the generators of the group, then the corresponding discrete Painlevé
equation can be written as a composition of elementary birational maps.

For this, we use the following Lemma:



Finally, we need an algorithm for representing a translation element of W(Eé) as a
composition of the generators of the group, then the corresponding discrete Painlevé
equation can be written as a composition of elementary birational maps.

For this, we use the following Lemma:

If w(oy) < 0, then

I(wowi) < 1(w),

where 1(w) is length of w € W, and ¢ is a simple root.



Decomposition of Translation Elements

Finally, we need an algorithm for representing a translation element of W(Eé) as a
composition of the generators of the group, then the corresponding discrete Painlevé
equation can be written as a composition of elementary birational maps.

For this, we use the following Lemma:

Reduction Lemma (V. Kac, Infinite dimensional Lie algebras, Lemma 3.11)

If w(ai) < 0, then
I(wowi) <I(w),

where 1(w) is length of w € W, and «; is a simple root.
As an example, consider the following translational mapping:
o« (a0, 1, a2, a3, a4, a5, ) = (o, a1, a2, a3 + 6, a4, a5 — 5, ag),

where § = ag + 2a1 + 3a2 + 2a3 + a4 + 2as + ag as usual.
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Decomposition of Translation Elements

Finally, we need an algorithm for representing a translation element of W(Eé) as a
composition of the generators of the group, then the corresponding discrete Painlevé
equation can be written as a composition of elementary birational maps.

For this, we use the following Lemma:

Reduction Lemma (V. Kac, Infinite dimensional Lie algebras, Lemma 3.11)

If w(ai) < 0, then
I(wowi) <I(w),

where 1(w) is length of w € W, and «; is a simple root.
As an example, consider the following translational mapping:
o« (a0, 1, a2, a3, a4, a5, ) = (o, a1, a2, a3 + 6, a4, a5 — 5, ag),

where § = ag + 2a1 + 3a2 + 2a3 + a4 + 2as + ag as usual.
Put
a = (ap, a1, a2, a3, a4, as, o).

Then the algorithm works as follows:
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ag

as

oy
a] a2 as
ap



ag

as
ap a1 a2 a3 Qa4

ex(a) = (a0, a1, a2, a3 + 6, a4, 5 — 8, ),
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ag

as
ap a1 a2 a3 Qa4

ex(a) = (a0, a1, a2, a3 + 6, a4, 5 — 8, ),

(905«1) = o« 0W5> () = (a0, 1,025 — §, 3 + 6, 24,6 — a5, 56 — 9),
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ag

as
ap a1 a2 a3 Qa4

px(0) = (a0, a1, a2, a3 + 9, a4, a5 — 5, ),
(905«1) = o« 0W5> () = (a0, 1,025 — §, 3 + 6, 24,6 — a5, 56 — 9),

( 2 _ 1

0y = s OWG)(0‘):(040:(1170425*5»a3+57a4,a6’5*a56):
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ag

as
ap a1 a2 a3 Qa4

ex(a) = (a0, a1, a2, a3 + 6, a4, 5 — 8, ),

(905«1) = o« 0W5> () = (a0, 1,025 — §, 3 + 6, 24,6 — a5, 56 — 9),
(50(*2) = @(*1) o W6) () = (0, 1,25 — 6,3 + 0, g, 6, & — as6),

(«) = (0, @125 — 9,8 — (25, 235, A, 256 — 0,0 — aus6),
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a6

a5
ap o1 2 &3 4

wx(x) = (0, 1, 2,3 + 6, a4, a5 — §, ag),

( ():('D*OW5> «) = (@0, a1, 25 — 6,03 + 6, 4,6 — a5, 56 — 9),

2
(60(*) 6) = (a0, a1, 025 — 0,3 + 0, a4, a6, I — as6),
3
(9"( V=@ W2) = (a0, 125 — 6,8 — aa5, 235, g, 256 — 0, — as6),
4
( W=l ) = (w0125 — 6,6 — @125, a1, 235, 4, ¥256 — 0,0 — Q56),
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Anton Dzhamay (UNC)

a6

as
ap a1 a2 a3 Qa4

px(0) = (a0, a1, a2, a3 + 9, a4, a5 — 5, ),

(«) = (0, a1, 025 — 8,3 + 6, a4, 0 — a5, w56 — 0),

() = (0, 1,25 — 6,3 + 0, g, 6, & — as6),

(o) = (6 — w0125, 0, 1, 235, 4, 256 — 6,8 — aus6),

)
)
W2) (o) = (a0, 125 — 0,0 — a5, 235, 4, 256 — 9,0 — A56),
)
)

Discrete Painlevé Equations July 28, 2017
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ag

as
ap a1 a2 a3 Qa4

ex(a) = (a0, a1, a2, a3 + 6, a4, 5 — 8, ),
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a6

as
ap a1 a2 a3 Qa4

px(0) = (a0, a1, a2, a3 + 9, a4, a5 — 5, ),

(«) = (0, a1, 025 — 8,3 + 6, a4, 0 — a5, w56 — 0),

() = (0, 1,25 — 6,3 + 0, g, 6, & — as6),

(o) = (6 — w0125, 0, 1, 235, 4, 256 — 6,8 — aus6),

o =@y ows ) (a) = (6 — ao125, @0, 1256 — I, 235, 4, 6 — 256, ),
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)
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( )
(%4) = o®o wl) () = (a0125 — 0,8 — @125, 1, 235, A, 256 — 0,8 — ase),
( )
( )
( )
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a6

as
ap a1 a2 a3 Qa4

px(0) = (a0, a1, a2, a3 + 9, a4, a5 — 5, ),

(«) = (0, a1, 025 — 8,3 + 6, a4, 0 — a5, w56 — 0),

() = (0, 1,25 — 6,3 + 0, g, 6, & — as6),

(o) = (w0125 — 0,0 — @125, 01, 235, a4, 256 — 0,0 — as6),

(o) = (6 — w0125, 0, 1, 235, 4, 256 — 6,8 — aus6),

o =@y ows ) (a) = (6 — ao125, @0, 1256 — I, 235, 4, 6 — 256, ),
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a6

a5
ap o1 2 &3 4

px(0) = (a0, a1, a2, a3 + 9, a4, a5 — 5, ),

() = (a0, 1,025 — §, 3 + 6, 24,6 — a5, 56 — 9),

() = (0, 1,25 — 6,3 + 0, g, 6, & — as6),

(o) = (w0125 — 0,0 — @125, 01, 235, a4, 256 — 0,0 — as6),

o =@y ows ) (a) = (6 — ao125, @0, 1256 — I, 235, 4, 6 — 256, ),

Anton Dzhamay (UNC)

(«) = (a6, 1223345, 0, —01234, 4, 1, A2),

)
)
)
)
= ¢t owo) () = (6 — aoizs, 0, a1, 4235, a4, 0256 — 6,6 — As6),
)
)
)
)

(x) = (a6, 1223345, —(r1234, 01234, —V0123, A1, 2),
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a6

as
ap a1 az a3 oy
px(0) = (a0, a1, a2, a3 + 9, a4, a5 — 5, ),
() = (@0, 1, 25 — 0,3 + 8, 04,6 — a5, 56 — 6),

() = (0, 1,25 — 6,3 + 0, g, 6, & — as6),
(o) = (w0125 — 0,0 — @125, 01, 235, a4, 256 — 0,0 — as6),

o =@y ows ) (a) = (6 — ao125, @0, 1256 — I, 235, 4, 6 — 256, ),

() = (12233456, — 01223345, 01223345, —101234, A4, A1, A2),
() = (a6, 1223345, 0, —01234, A4, A1, O2),

() = (a6, 1223345, —1234, 01234, — 10123, A1, O2),

(o) = (w6, 1223345, —¥1234, A4, 0123, A1, O02),

)
)
)
)
= ¢t owo) () = (6 — aoizs, 0, a1, 4235, a4, 0256 — 6,6 — As6),
)
)
)
)
)

(49 = 9 o
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a6

as

ap a1 a2 a3z Qa4

(10) _ _(9) _ _ .
vy =i owyg) () = (6, €1223345, —(11234, A4, 0123, U1, A2),
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a6

as

ap a1 a2 a3z Qa4

(10) _ _(9) _ _ .
vy =i owyg) () = (6, €1223345, —(11234, A4, 0123, U1, A2),
(11) (10)
Yy =@y owa)(x) = (as, a235, 1234, —123, 0123, —(234, A2),

(12) (11)
oy =@y ows ) (x) = (ae, @235, 01, —123, 0123, X234, —34),
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a6

as

Qp 1 2 3 Q4

10

(Lp( )= oo W4) (o) = (a6, 1223345, —1234, Q4, 0123, A1, O2),
D _ 00,

ox w2 ) («) = (a6, @235, ¥1234, —Q123, €0123, —234, A2),
(12) _

o ) ows ) («) = (g, 235, a1, —123, 20123, 234, —134),
S19) (12)

=@, 7 ows ) («) = (as, @235, a1, —@123, 0123, A2, A34),
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a6

as

ap a1 a2 a3z Qa4

(10) (9) _ 1o
s @i owa ) («) = (a6, ¥1223345, —1234, A4, 0123, A1, O2),
(11) (10)
ps =@y T owz) (x) = (e, @235, ¥1234, —123, 40123, —X234, A2),
(12) _ (1)
pi =@y ows ) (x) = (e, @235, a1, —(123, 0123, 234, —(34),
13) (12)
px =@y 7 ows ) («) = (a6, @235, 01, —123, 0123, 02, 0134),
(14) _  (13) _
py = ows ) (&) = (a6, 235, —23, 123, a0, A2, 134),
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a6

as
ag a1 ag o3 oy
(o) = (w6, 1223345, —¥1234, A4, 0123, A1, O2),

(x) = (a6, @235, ¥1234, —r123, 0123, —v234, 2),

(o) = (6, 235, a1, —(v123, 0123, 234, —(34),

0
W~
o)
=
w
=

(o) = (cvg, 235, —r23, @123, 0, 02, 34 ),

() = (a6, a5, 23, 1, g, —3, 34),

)
( )
( )
(w*ls) = Po Ws) () = (a6, @235, a1, —123, @0123, A2, A34),
( )
( )
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a6

as

ap ] i a3 4

10
(L.Di )= o 0w,y () = (a6, 1223345, —1234, 014, 00123, A1, O2),
(11) (10)
e = w2 ) («) = (a6, @235, 01234, —Q123, 0123, — 234, O2),
(12)
py = ) o ws () = (a6, @235, 1, —r123, 0123, (4234, —(:34),

(19 _ ,(19) _

o ows ) (&) = (a6, 235, —23, 123, a0, A2, 434),
(15) _ _

©x Vows ) («) = (as, a5, 23, a1, a0, —az, aza),
(16) _ 09) _

P ows ) (a) = (as, a5, a2, 1, a0, @3, a4),

3)7 12) _
ox = i 5) o) = (ae, 235, a1, —(r123, 0123, 2, (34),
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a6

as

ap ] i a3 4

10
(L.Di )= o 0w,y () = (a6, 1223345, —1234, 014, 00123, A1, O2),
(11) (10)
e = w2 ) («) = (a6, @235, 01234, —Q123, 0123, — 234, O2),
(12)
py = ) o ws () = (a6, @235, 1, —r123, 0123, (4234, —(:34),

(19 _ ,(19) _

o ows ) (&) = (a6, 235, —23, 123, a0, A2, 434),
(15) _ _

©x Vows ) («) = (as, a5, 23, a1, a0, —az, aza),
1) _ 05

QU0 = ) o ws () = (as, a5, a2, a1, a0, a3, a4),

)
w)
)
o1 = 1P o 5) «) = (ag, a235, 01, —Q123, (0123, A2, A34),
)
)¢
)¢
)¢

a) = (a0, a1, a2, a3, a4, a5, 06).
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a6

as

ap a1 a2 a3z Qa4

10
(t,oi )= o 0w,y (x) = (a6, 1223345, —Cr1234, 04, (0123, A1, A2),
(11) (10)
e = w2 ) («) = (a6, @235, 01234, —Q123, 0123, — 234, O2),
(12)
e = ) o ws () = (a6, @235, 1, —r123, 0123, (4234, —(:34),

(19 _ ,(19) _

©x ows ) (&) = (a6, 235, —23, 123, a0, A2, 434),
(15) _ _

P Vows ) («) = (as, a5, 23, a1, a0, —az, aza),
1) _ 09

o9 = (x) = (a6, a5, a2, 01, 0, 3, A4,

)
we) (@
)
o1 = 1P o 5) «) = (ag, a235, 01, —Q123, (0123, A2, A34),
)
)¢
ws)
)¢

a) = (a0, a1, a2, a3, a4, a5, 06).

Thus,

(P« = 0r O W5 O W O W3 O Wg O W5 O W2 OWq OW30W] OW20Ws0W)OW] OWa 0WegOWs
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Using our understanding of W(Eg)), compare the following

o Equation obtained by B. Grammaticos, A. Ramani, and Y. Ohta by the application of
the singularity confinement criterion to a deautonomization of a QRT map.

e Equation obtained by T. Takenawa and A. D. as a reduction of an elementary
Schlesinger transformation of a Fuchsian system.

First let us review these equations.



The following example of a d—P(A(21)*) equation was first obtained by B. Grammaticos,

A. Ramani, and Y. Ohta back around 1996 by applying the singularity confinement criterion
to deautonomization of an integrable discrete autonomous mapping; due to the simplicity
structure of the equation we will refer to it as a model example.



Difference Painlevé Equation of Type d—P(Agl)*): Deautonomization

The following example of a d—P(A(;)*) equation was first obtained by B. Grammaticos,

A. Ramani, and Y. Ohta back around 1996 by applying the singularity confinement criterion
to deautonomization of an integrable discrete autonomous mapping; due to the simplicity
structure of the equation we will refer to it as a model example.

The Model Example of d-P(A{"*)

We consider a birational map ¢ : P! x P! -—» P! x P! with parameters by,...,bs:

b1 bz bz by, 1:)1 E)z 53 154_— -
(b5 bg by bg'f’g) = (b5 bg bz bg’f’g) ’
6 = b1 + b2 + bz + bs + bs + bg + b7 + bg

b1 =b1, bs3=bs, bs=bs+5, br=br—0
bo =bs, ba=bs, bs=be+3d, bs=bs—34,

and f and g are given by the equation

(g +b1)(g + b2)(g + b3)(g + b4)
(g — bs)(g — bs)

(f = b1)(F — b2)(f — bs)(f — ba)
(f + br)(f + bg)

(f+e)f+e) =

f+e)(f+2) =
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The singularity structure of this example is the same as in our model:



Difference Painlevé Equation of Type d—P(Agl)*): Deautonomization

The singularity structure of this example is the same as in our model:

f=0 f =00
( ) ( f+g=0
p7(—b7,00) ps(—bs, o0 E E
. ) bt . &/
/ / E Hg — E7 — Es
pa(ba, —ba)
@ pe (oo, bg) Es
p3(bs, —bs) e
Femeeeeosy E
pz(b27—b2)
¢ p5(o0, bs) = /‘{5
p1(b1, —b1)
g=0 Hg
He + Hg He H; H¢ +Hg —E; —Ez —Es —E4 Hf — Es — Eg
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Difference Painlevé Equation of Type d—P(Agl)*): Deautonomization

The singularity structure of this example is the same as in our model:

f=0 f =00
( ) ( f+g=0
p7(—b7,00) ps(—bs, o0 E E
. ) bt . &/
/ / E Hg — E7 — Es
pa(ba, —ba)
@ pe (oo, bg) Es
p3(bs, —bs) e
Femeeeeosy E
pz(b27—b2)
¢ p5(o0, bs) = /‘{5
p1(b1, —b1)
g=0 Hg
He + Hg He H; H¢ +Hg —E; —Ez —Es —E4 Hf — Es — Eg

Now let us compute the action of this mapping on Pic(X)
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Difference Painlevé Equation of Type d—P(Agl)*): Deautonomization

The action of ¢« on Pic(X)
Finally, we compute the action of ¢, on Pic(X) to be

He — 6He + 3Hg — 261 — 2E2 — 263 — 264 — E5 — E6 — 3E7 — 3Es,
He > 3He +Hg — &1 — E2 — €3 — &4 — E7 — &3,

E1 = 2He + Hg — E2 — E3 — E4 — E7 — &y,

Ex— 2He + Hg — E1 — E3 — E4 — E7 — &y,

E3 = 2He +Hg — E1 — E2 — E4 — E7 — &g,

Ea = 2He +Heg — E1 — E2 — E3 — E7 — &g,
55P—>3Hf“r%g*£1752753754756*57*58,

Ee > 3He+Hg —E1 —E2—E3—E1— E5 — E7 — &g,

Er — Hi — Es,

Es = He — &7,
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Difference Painlevé Equation of Type d—P(Agl)*): Deautonomization

The action of ¢« on Pic(X)
Finally, we compute the action of ¢, on Pic(X) to be

He — 6He + 3Hg — 261 — 2E2 — 263 — 264 — E5 — E6 — 3E7 — 3Es,
He > 3He +Hg — &1 — E2 — €3 — &4 — E7 — &3,

E1 = 2He + Hg — E2 — E3 — E4 — E7 — &y,
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E3 = 2He +Hg — E1 — E2 — E4 — E7 — &g,

Ea = 2He +Heg — E1 — E2 — E3 — E7 — &g,
55P—>3Hf“r%g*£1752753754756*57*58,

Ee > 3He+Hg —E1 —E2—E3—E1— E5 — E7 — &g,

Er — Hi — Es,

Es = He — &7,

and so the induced action @« on the sub-lattice R is given by the following translation:
(a0, a1, a2, a3, a4, as,a6) — (a0, a1, a2, a3, aq, as, as) + (0,0,0,1,0,—1,0)4,

as well as the permutation oy = (DoD1D2) of the irreducible components of —K x.
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The action of ¢« on Pic(X)
Finally, we compute the action of ¢, on Pic(X) to be

He — 6He + 3Hg — 261 — 2E2 — 263 — 264 — E5 — E6 — 3E7 — 3Es,
He > 3He +Hg — &1 — E2 — €3 — &4 — E7 — &3,

E1 = 2He + Hg — E2 — E3 — E4 — E7 — &y,

Ex— 2He + Hg — E1 — E3 — E4 — E7 — &y,

E3 = 2He +Hg — E1 — E2 — E4 — E7 — &g,

Ea = 2He +Heg — E1 — E2 — E3 — E7 — &g,
55P—>3Hf“r%g*£1752753754756*57*58,

Ee > 3He+Hg —E1 —E2—E3—E1— E5 — E7 — &g,

Er — Hi — Es,

Es = He — &7,

and so the induced action @« on the sub-lattice R is given by the following translation:
(a0, a1, a2, a3, a4, as,a6) — (a0, a1, a2, a3, aq, as, as) + (0,0,0,1,0,—1,0)4,
as well as the permutation oy = (DoD1D2) of the irreducible components of —K x.

Hence @x = Or O W5 O W2 O W3 OWg OW5 0W2 0Wyq O0OW30W] OW20W50W0O0W] OW2 0Wg O Wws.
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In 2001 H. Sakai, developing the ideas of K. Okamoto in the differential case, proposed a
classification scheme for Painlevé equations based on algebraic geometry. To each equation
corresponds a pair of orthogonal sub-lattices (M(R), M(R')) — the surface and the symmetry

sub-lattice in the Egl) lattice, and a translation element in W(RL).



Sakai’s Classification Scheme for Discrete Painlevé Equations.

In 2001 H. Sakai, developing the ideas of K. Okamoto in the differential case, proposed a
classification scheme for Painlevé equations based on algebraic geometry. To each equation
corresponds a pair of orthogonal sub-lattices (M(R), M(R')) — the surface and the symmetry

sub-lattice in the Ez(gl) lattice, and a translation element in VNV(RL).

a-Pr
(st ()

i a-Pyi q-Py q-Pry, q-Prix / \

(L) () (80 o (080 (A0 o () (g ) (40) (40)°

I R A | T

(56 (5) (5)" (27" (4) () s (4o (40)'

Pyr,d-Py  Py,d-Pr Prip \
d-Pypp alt. d-Ppy
(A7) () e (1

Pry,d-Prp Pry,alt.d-Py Py

Symmetry-type classification scheme for Painlevé equations
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In 2001 H. Sakai, developing the ideas of K. Okamoto in the differential case, proposed a
classification scheme for Painlevé equations based on algebraic geometry. To each equation
corresponds a pair of orthogonal sub-lattices (M(R), M(R')) — the surface and the symmetry

sub-lattice in the Ez(gl) lattice, and a translation element in VNV(RL).

(=4)°

!

(m5) > (257)"> (67)

!

CONENEDE

Anton Dzhamay (UNC)

-
7

a-Pyi q-Py q-Pry, q-Prix

229

I N ! I

() (4) (a0 00) " (1)

Pyr,d-Py  Py,d-Pp Prix
alt. d-Pry

d-Pryr
(187) s (1)

Pry,d-Prp

a-Pr

(43) o =

N\

> (Dél))qH (AI(IU)‘I*} (A1+A2)(]))q* ((A1+A1)(]))q7 (Agl)): (A(()l))q

|l =4

~

Py, alt.d-Py
The differential part of the classification scheme
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Sakai’s Classification Scheme for Discrete Painlevé Equations.

In 2001 H. Sakai, developing the ideas of K. Okamoto in the differential case, proposed a
classification scheme for Painlevé equations based on algebraic geometry. To each equation
corresponds a pair of orthogonal sub-lattices (M(R), M(R')) — the surface and the symmetry

sub-lattice in the Ez(gl) lattice, and a translation element in VNV(RL).

a-Pr
ety ()

i a-Pyi a-Py a-Prv, a-Prix / \
() (559 (£59) T (69) o (442) o (G ) (e ) (497 (a1
N ! A
(L) = (689 (863 (020) 2 (48 " (@) e (a0) L (47

Pyr,d-Py  Py,d-Pr Prix
d-Pyyp alt. d-PH\A
(4)" e (40 e (4

Pry,d-Prp Pry,alt.d-Py Py

The purely discrete part of the classification scheme: why Painlevé?
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Sakai’s Classification Scheme for Discrete Painlevé Equations.

In 2001 H. Sakai, developing the ideas of K. Okamoto in the differential case, proposed a
classification scheme for Painlevé equations based on algebraic geometry. To each equation
corresponds a pair of orthogonal sub-lattices (M(R), M(R')) — the surface and the symmetry

sub-lattice in the Ez(gl) lattice, and a translation element in VNV(RL).

a-Pr
(st ()

i a-Pyi q-Py q-Pry, q-Prix / \

() (587)" (52 = (0 (4 (s ) (et @) (4)" (367)"

| | | | laf? =1 a2 =4
1\ ! !
(517 (557 (010 (00) S (00 ) () A (0
Pyr,d-Py | Py,d-Pr Prix
d-Pyyp alt. d-PH\A
(4) e () )

Pry,d-Prp Pry,alt.d-Py Py

Isomonodromic approach: difference Painlevé equations as reductions
from Schlesinger transformations of Fuchsian systems (our project)
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Difference Painlevé Equation of Type d—P(Agl)*): Schlesinger
Transformations

So pure difference Painlevé equations in Sakai’s scheme are (summetry and surface types):
1)) 1 1 1)) * 1))\ * 1)) *
(Eg)) — (E(7 )) — (Eg )) — .-+ or (Af) )> — (A(1 )) — (A?) —

P.Boalch has identified the Fuchsian systems whose Schlesinger transformations have the
required symmetry type (spectral type 131313 for d-P(A3)).

However, each discrete Painlevé equation is characterized not only by the symmetry or the
surface type, but also by the actual translation direction in Pic(X) and to identify that
explicit computations are needed.
Take n = 2 finite poles zg = 0, z; = 1, matrix size m = 3, and rank(A;) = 2:

Ap Ay
=—+

4 z —

1t
G
A(z) 1 A =BiCl = [bi1  bigs] L'ﬂ] .
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Difference Painlevé Equation of Type d—P(Agl)*): Schlesinger
Transformations

So pure difference Painlevé equations in Sakai’s scheme are (summetry and surface types):
1)) 1 1 1)) * 1))\ * 1)) *
(Eg)) — (E(7 )) — (Eg )) — .- or (Af) )> — (A(1 )) — (A?) —

P.Boalch has identified the Fuchsian systems whose Schlesinger transformations have the
required symmetry type (spectral type 131313 for d-P(A3)).

However, each discrete Painlevé equation is characterized not only by the symmetry or the
surface type, but also by the actual translation direction in Pic(X) and to identify that
explicit computations are needed.

Take n = 2 finite poles zg = 0, z; = 1, matrix size m = 3, and rank(A;) = 2:

Ao | Al ; o
Afz) = =2 A =BiCl = [bi1 bi2] | ]
(@)=—+"—1 i =[bi1 big] L?f

The corresponding Riemann scheme and the Fuchs relation are

z=20 z=1 7 = 00

0} 01 K1 2 1 2 >
0 0 K3 =t
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Difference Painlevé Equation of Type d—P(Agl)*): Schlesinger
Transformations

So pure difference Painlevé equations in Sakai’s scheme are (summetry and surface types):
1)) 1 1 1)) * 1))\ * 1)) *
(Eg)) — (E(7 )) — (Eg )) — .- or (Af) )> — (A(1 )) — (A?) —

P.Boalch has identified the Fuchsian systems whose Schlesinger transformations have the
required symmetry type (spectral type 131313 for d-P(A3)).

However, each discrete Painlevé equation is characterized not only by the symmetry or the
surface type, but also by the actual translation direction in Pic(X) and to identify that
explicit computations are needed.

Take n = 2 finite poles zg = 0, z; = 1, matrix size m = 3, and rank(A;) = 2:

Ao | Al ; o
Afz) = =2 A =BiCl = [bi1 bi2] | ]
(@)=—+"—1 i =[bi1 big] L?f

The corresponding Riemann scheme and the Fuchs relation are

z=20 z=1 7 = 00

0} 01 K1 2 1 2 >
0 0 K3 =t

No continuous deformations but non-trivial Schlesinger transformations.
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Using various gauge transformations we can normalize the b-vectors, and then use the
condition C;rBi = ©; to parameterize the cf-vectors:

1 0 0 1
0l 0 « f —y -0 v 6!

Bo= |0 1,05:{0 o },Blzo ,cl= "% 1
0 o 0 62 B - 02-5 5 0
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Using various gauge transformations we can normalize the b-vectors, and then use the
condition C;rBi = ©; to parameterize the cl-vectors:

1 0 0 1
0l 0 « f —y -0 v 6!
Bo= |0 1,05:{0 o },Blzo ,cl= "% 1
0 0 0 65 B 11 ;-6 & O
Requiring that the eigenvalues of Ao = —Ag — A1 are k1, K2, and K3:

tr(Aso) = K1 + k2 + K3 (the Fuchs relation)
[Acol11 + [Aco|22 + [Aco ]33
det(Aso) = K1K2k3

K2K3 + K3K1 + K1K2

imposes two linear constraints on four parameters «, 3, v, and 6.
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Using various gauge transformations we can normalize the b-vectors, and then use the
condition C;rBi = ©; to parameterize the cl-vectors:

1 0 0 1
0l 0 « f —y -0 v 6!
Bo= |0 1,05:{0 o },Blzo ,cl= "% 1
0 0 0 65 B 11 ;-6 & O
Requiring that the eigenvalues of Ao = —Ag — A1 are k1, K2, and K3:

tr(Aso) = K1 + k2 + K3 (the Fuchs relation)
[Acol11 + [Acol22 + [Aco |33 = K2k3 + K3K1 + K1K2
det(Aso) = K1K2k3

imposes two linear constraints on four parameters «, 3, v, and . We can write them as a
linear system on o and f3:

(Y +8+061 —03)o — (v + 8)B = Kars + kak1 + rikz + (03 — 05)5
— (63 + 01)(65 + 67) — 6361),
—(03(v + 8+ 61 —03) + 03y + 018)oc + (83 (v + 8) + 63y + 016)p = Kikok3
+ 01 ((65 — 02)8 + 02(0% + 63)).
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Using various gauge transformations we can normalize the b-vectors, and then use the
condition C;rBi = ©; to parameterize the cl-vectors:

0 1

1 0
0l 0 « f —y -0 v 6!
Bo= |0 1,05:{0 o },Blzo ,cl= "% 1
0 0 0 65 B 11 ;-6 & O
Requiring that the eigenvalues of Ao = —Ag — A1 are k1, K2, and K3:

tr(Aso) = K1 + k2 + K3 (the Fuchs relation)
[Acol11 + [Acol22 + [Aco |33 = K2k3 + K3K1 + K1K2
det(Aso) = K1K2k3

imposes two linear constraints on four parameters «, 3, v, and . We can write them as a
linear system on o and f3:

(Y+0640f —02)oc — (v + 8)B = raks + kak1 + k1ke + (02 — 65)8
— (63 + 01)(65 + 67) — 6361),
—(O2(y + 5+ 0F — 02) + 02y + 018) o + (03 (y + 8) + 02y + 016)B = w1 K2k
+01((05 — 0)8 + 65(65 + 63))-

Notice that the coefficients of the matrix of the above linear system are written in terms of
the expressions y + 8, vy + 0 + 6% - 9%, and ny + 0%6.
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Choose parameterization variables x and y to simplify the structure of the substitution rule
(matrix entries and the determinant):
(v+8)(65 —63) Oy +6i

o1 -2 Y+8+0f — 07
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Choose parameterization variables x and y to simplify the structure of the substitution rule

(matrix entries and the determinant):

_ (v +8)(8 — 63) v Oty +615
0F —02 Y+5+06] - 67
This gives:
(yrl + x(0gr1+r2)) )
x+68 —62 (y +65)r1 +r2

(x+y)(0f —67) ECERICE N

where r1 and ro are the right-hand-sides of our linear system on « and f3

r1 = r1(x,y) = KiR2 + Kars + rart — (v — 07)(x — 65) — 05(y + 63)
—01(65 + 63 + 67),
ro =r2(x,y) = k1kaks + 01 ((y — 07)(x — 03) + 05 (v + 63)).
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Choose parameterization variables x and y to simplify the structure of the substitution rule

(matrix entries and the determinant):

L (r+9)(65 - 63) __ 0y +0is
oi—02 YT yystel—67
This gives:
( X(93r1+r2))
Y1+ g 2
x+65—0 (v +65)r1 + 12
x(x,y) = o B(xy) = ( 0 )

(x+y)(0f —67) ECERICE N

where r1 and ro are the right-hand-sides of our linear system on « and f3
r1 = r1(x,y) = KiR2 + Kars + rart — (v — 07)(x — 65) — 05(y + 63)
—01(65 + 03 + 61),
r2 = ra2(x,y) = riraks + 01 ((y — 07)(x — 63) + 05 (y + 63))-
Schlesinger evolution equations give us the map ¢ : (x,y) — (X,¥):

(o — B)(ox(0] — 63) + (1 + 03)(x(y — 63) + y(65 — 63)))

X =
(o= B)(x(y — 6%) + (65 — 03)y) — (61 + 1)(65 — 65)
o (= B)(vlx+ 03 — 03) — 03)
(05 — 63)
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Choose parameterization variables x and y to simplify the structure of the substitution rule
(matrix entries and the determinant):

L (r+9)(65 - 63) __ 0y +0is

R B Sy Ty
This gives:
( X(93r1+r2))
Y1+ g 2
x+61—0 (y + 605)r1 +r2
x(x,y) = o B(xy) = ( 0 )

(x+y)(0f —67) ECERICE N

where r1 and ro are the right-hand-sides of our linear system on « and f3
r1 = r1(x,y) = KiR2 + Kars + rart — (v — 07)(x — 65) — 05(y + 63)
—01(65 + 03 + 61),
r2 = ra2(x,y) = riraks + 01 ((y — 07)(x — 63) + 05 (y + 63))-
Schlesinger evolution equations give us the map ¢ : (x,y) — (X,¥):

(o — B)(ox(0] — 63) + (1 + 03)(x(y — 63) + y(65 — 63)))

5= @S By — 02) + (0F — 02)y) — (0] + 1)(0h — 02)
(@ B)(y(x+ 6y — 62) — 63%)
v (03 — 03)

Very complicated! (Finding a simple form for this equation was one of the main motivations
behind this project)
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The Okamoto surface for the map ¢ : (x,y) — (X,¥) is given by the blow-up diagram:



Difference Painlevé Equation of Type d—P(Agl)*): Schlesinger
Transformations

The Okamoto surface for the map ¢ : (x,y) — (X,¥) is given by the blow-up diagram:

x=0 X = 00
x+y=0
™ U
v =e2 =7 =8 Hy FZ/ Fg/
/ /Fg Hy — F7 —Fsg
uy B
4, 76 2, /1{
€-------= F
) F4
l Y H, L F, /k{
T
! H, — F,
y=0 Hy
T4
Hx + Hy H, H, Hy +Hy —F1 —F2 —F3 —F4 H,—-F5 —Fs
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Difference Painlevé Equation of Type d—P(Agl)*): Schlesinger
Transformations

The Okamoto surface for the map ¢ : (x,y) — (X,¥) is given by the blow-up diagram:

x=0 X = 00
x+y=0
K Uy
o v/ ©y
/ /Fg Hy — F7 —Fsg
™ B
4, 76 2, /1{
€-------= F
) F4
l Y H, L F, /k{
s
! H, — F,
y=0 Hy
T4
Hx + Hy H, H, Hy +Hy —F1 —F2 —F3 —F4 H,—-F5 —Fs

So we see that the configuration structure is the same, but the coordinates of the blowup
points are now expressed in terms of the characteristic indices:

pi(03++i, —0%—ki), pa(0,0), ps(c0,01), pe(00,07), pr(03—05,00), ps(6+1,00).
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The action on the Picard lattice is, however, quite different:



Difference Painlevé Equation of Type d—P(Agl)*): Schlesinger
Transformations

The action on the Picard lattice is, however, quite different:

The action of ¥« on Pic(X)

Hs
Hg
&1
&
Es
&4
Es
Ee
Er
Es

= 2He +3Hg — E1 — E2 — E3 — E4 — 265 — 2E3,

— 3He + 5Hg — 261 — 262 — 263 — 284 — 385 — Eg — 263,
= He +2Hg —Ex — E3 — E4 — E5 — &g,

— He +2Hg —E1 — E3 — E4 — E5 — &g,

= He +2Hg —E1 — E2 — E4 — E5 — &g,

= He+2Hg —E1 — E2 — E3 — E5 — Es,

— &,

= 2He +2Hg —E1 — E2 — E3 — E4 — 285 — &g,

= 2He +3Hg —E1 — E2 — E3 — E4 — 2E5 — E — 263,
>—>'Hg—55,

and so the induced action @« on the sub-lattice R is given by the following translation:

(20, 01,02, a3, a4, a5, ) — (o, a1, a2, @3, 04, a5, a6) + (0,0,0,—1,1,1, —1)4,
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To compare between these two examples, we can do the following:



To compare between these two examples, we can do the following:

o Compare the parameters and the dynamic on the level of parameters:

bi = 02 + ki, ba =0, bs =01, bg = 6%, by =0} — 62, bg = —02 — 1.



To compare between these two examples, we can do the following:

o Compare the parameters and the dynamic on the level of parameters:
bi =03 + ki, ba =0, bs =01, bg =07, by =05 — 63, bg = —03 — 1.

e This can also be written as follows, with § = x(—Kx) =b1 +--- +bg(= —1):

(b1 b2 bz by b1 bo bs by o
P (b5 b br bs) = (bs 46 be+6 br—5 bg— 6) deautonomization

(b1 bz bz by b1 ba b3 by . .
P (b5 bs by bs) — (bs— 5 bg br4o bs) Schlesinger Transformations



Comparison between different forms of d-P(A%)

To compare between these two examples, we can do the following:

o Compare the parameters and the dynamic on the level of parameters:
bi = 03 + ki, ba =0, bs =0}, bg =07, by =05 — 03, bs = —03 — 1.
e This can also be written as follows, with é = x(—=Kx) =b1 +--- + bg(= —1):

b1 b2 bz ba b1 bs bs by o
(br be b7 bs) = (b5 +6 b+ by—6 bg— 6) deautonomization

(b1 bz bz by b1 bo bs by . . L
P (bs bs  br bs) — (bs 5 bg br4d bs) Schlesinger Transformations

e Riemann scheme (which gave d—P(A(Ql)*) =%0(1,3)0 {19} 0%0(1,3)0 {19 )
z=0 z=1 z=00 01} z=0 z=1 z=00
6} 0! K1 11 05 —1 0} +1 K1
0 02 K2 — 62 62 K2 :
0 0 K3 0 0 K3
z=0 z=1 z=o FETNGE z=0 z=1 7 = 00
o o1 K1 BN 08 0 -1 ki+1
02 0% K2 02-1 607—-1 ko+1
O 0 K3 0 0 k3 +1
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o Translation directions:

©Ox - (ao,a1,a2,a3,a4,a5,a6) — (ao,al,ag,ag,a4,a5,a6) -+ (0,0, 0,1,0, —1,0)5
P o (a0, a1, a2, a3, a4, as, ag) — (ao, a1, a2, a3, a4, as, a6) + (0,0,0,—1,1,1, —1)§



o Translation directions:

Px (a07a17a2aa37a4za57a6) = (a07a1>a25a37a47a5aa6) + (0707 07 1707 _170)5
Yyt (a0, a1, 2, 3, 04, a5, a6) — (ao, a1, a2, a3, a4, o5, 06) + (0,0,0,—1,1,1, —1)¢

o The best approach, however, is through the decomposition. In the same way as we did
for ¢+, we can compute and compare the decomposition for 1;

Px = Or O W5 O W2 O W3 OWg OW5 OW2 0Wyq OW30W] OW2 O0Ws50WogOW] OWwW 0Wg OWwWs

1/1* = O0r OwW1 OW2 OW3 OWg OW5 O0W2O0W4O0W30W] OW2O0W50W)OW] OWg OWgOW3



o Translation directions:

Px (a07a17a2aa37a4za57a6) = (aoaa1>a2aa3aa4va5aa6) + (Oa07 0,1,0, _170)5
Yyt (a0, a1, 2, 3, 04, a5, a6) — (ao, a1, a2, a3, a4, o5, 06) + (0,0,0,—1,1,1, —1)¢

o The best approach, however, is through the decomposition. In the same way as we did
for ¢+, we can compute and compare the decomposition for 1;

Px = Or O W5 O W2 O W3 OWg OWp5 OW2 O0Wyq OW30W] OW2 0Ws50W)OW] OW2 0Wg OWs

1/1* = O0r OwW1 OW2 OW3 OWg OW5 O0W2O0W4O0W30W] OW2O0W50W)OW] OWg OWgOW3

o This gives us the equivalence!

Y = Or OW] O W5 00,2 O(,D*OW5OW3:(W3OW5)O(,0*O(W3OW5)_1



Comparison between different forms of d-P(A%)

o Translation directions:

0« ¢ (0, 01, a2, a3, ag, a5, a6) = (o, a1, a2, a3, a4, as,a6) 4+ (0,0,0,1,0,—1,0)6
Yy : (@0, a1, a2, a3, a4, as,as) — (o, a1, a2, a3, aq, as, a6) + (0,0,0,—1,1,1,—1)4

o The best approach, however, is through the decomposition. In the same way as we did
for ¢+, we can compute and compare the decomposition for 1;

Px = O0r O W5 O W2 O W3 OWg OW5 OW2 0Wq OW30W] OWoO0Ws O0WwWoO W] OW 0Wg OWs

¢'* = O0r OW]1 OW2 OW3 OWg O W5 OW2 O0Wqg O0OW30W] OWQ2O0W50W)O0W] OWy O0WgOW3

This gives us the equivalence!
s = 0r OW] O W5 00,2 0px 0Ws 0wz = (W3 0W5) 0 px 0 (w3 OW5)_1
e The mapping ws o w3 gives us the change of variables between the two equations,

_ x(y — 01) + y(05 + k1) + (02 4+ £1) (05 + 62 + 0] + 2k1)
y+ 62 + k1
x(y — 63 — 01 — k1) +y(95 — 603) + (65 + w1) (05 + 65 + 2k1)
g: 2
x— 0§ — K1

f
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