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Exercise 1. Give examples of groups which are not the fundamental group of a closed surface.

Exercise 2. Draw a picture of the Cayley graph of Z3 ∗ Z4.

Exercise 3. Let G = 〈S〉 be a group generated by the set S. For any x ∈ G, define its word length ‖x‖S
to be the length of the shortest word in the alphabet S ∪ S−1 that represents the element x:

‖x‖S = min{n | ∃ s1, . . . , sn ∈ S ∪ S−1 s.t. x = s1 · · · sn}.

Show that the function dS : G × G −→ G defined by dS(x, y) = ‖x−1y‖S is a distance on G and
coincides with the graph distance on the Cayley graph of G with respect to generating set S.

Exercise 4. Let G = 〈S〉 be a finitely generated group and let Γ(G,S) be its Cayley graph, equipped
with the graph distance dS. Show that the multiplication in G defines a distance-preserving
transitive action of G on Γ(G,S): for any two vertices x, y ∈ Γ(G,S), and for any 1 ∈ G, dS(1.x, 1.y) =
dS(x, y).

Show that the quotient space for this action is homeomorphic to a bouquet of #S circles.

Exercise 5. Let S and S′ be two different finite generating sets of a group G. Show that the Cayley
graphs Γ(G,S) and Γ(G,S) are quasi-isometric.

Exercise 6. Show that the Cayley graph of a finite group is quasi-isometric to a point. More generally,
every compact metric space is quasi-isometric to a point.

Exercise 7. Let H ≤ G be a finite index subgroup of G. Show that H is finitely generated if and only
if G is.

Suppose that G = 〈S〉 and H = 〈S′〉 are finitely generated. Show that the Cayley graphs Γ(G,S)
and Γ(H,S′) are quasi-isometric.

Exercise 8. Show that quasi-isometry is an equivalence relation.
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Exercise 9. Let (M, d1) be a compact Riemannian manifold.

a) Show that it is possible to define a metric d̃1 on the universal cover M̃ of M in such a way that the
monodromy action of the fundamental group π1(M) on (M̃, d̃1) preserves the distances: π1(M)
is a subgroup of the group of isometries of (M̃, d̃1).

b) Let U ⊂ M̃ be a fundamental domain for the monodromy action: U = σ(M), where σ : M −→ M̃
is any continuous section of the covering projection π̃ : M̃ −→ M, that is σ is injective and
π ◦ σ = id|M.

c) Show that the set
S = {s ∈ π1(M) | s , id and sŪ ∩ Ū , ∅}

is finite.

d) Show that
inf{d̃1(Ū, xŪ) | x ∈ π1(M) − (S ∪ {id})} =: 2d

is a minimum and strictly positive. Moreover, if d1(Ū, xŪ) < 2d then x ∈ S ∪ {id}.

e) Let us fix p ∈ M̃. For any x ∈ π1(M), denote by [p, x.p] a geodesic path from p to x.p. Write

k := b
d̃1(p, x.p)

d
c

and let us take points
y0 = p, y1, . . . , yk, yk+1 = x.p

on the geodesic curve [p, x.p], such that d̃1(yi, yi+1) ≤ d for any i = 0, . . . , k. For any i, consider
hi ∈ π1(M) such that yi ∈ hiŪ. Then h−1

i hi+1 ∈ S.

This implies that S generates the fundamental group of M: π1(M) = 〈S〉.

f) The set of points π1(M).p := {x.p | x ∈ π1(M)} is discrete in M̃ and there exists D > 0 such that
the neighbourhood of radius 2D,

B2D(π1(M).p) =
⋃

x∈π1(M)

B2D(x.p),

is the whole manifold M̃.

g) For any x ∈ π1(M), let m := ‖x‖S = dS(id, x). Show that

1
2D

d̃1(p, x.p) ≤ m ≤ k + 1 ≤
1
d

d̃1(p, x.p) + 1,

and hence (π1(M), dS) and (M̃, d̃1) are quasi-isometric. This result is a theorem proved indepen-
denlty by Švarcz and Milnor.


