Groups, ends and trees: exercises II

Michele Triestino

2015-07-22

Exercise 1. Give examples of groups which are not the fundamental group of a closed surface.
Exercise 2. Draw a picture of the Cayley graph of $\mathbf{Z}_{3} * \mathbf{Z}_{4}$.
Exercise 3. Let $G=\langle S\rangle$ be a group generated by the set S. For any $x \in G$, define its word length $\|x\|_{S}$ to be the length of the shortest word in the alphabet $S \cup S^{-1}$ that represents the element x :

$$
\|x\|_{S}=\min \left\{n \mid \exists s_{1}, \ldots, s_{n} \in S \cup S^{-1} \text { s.t. } x=s_{1} \cdots s_{n}\right\} .
$$

Show that the function $d_{S}: G \times G \longrightarrow G$ defined by $d_{S}(x, y)=\left\|x^{-1} y\right\|_{S}$ is a distance on G and coincides with the graph distance on the Cayley graph of G with respect to generating set S.

Exercise 4. Let $G=\langle S\rangle$ be a finitely generated group and let $\Gamma(G, S)$ be its Cayley graph, equipped with the graph distance d_{S}. Show that the multiplication in G defines a distance-preserving transitive action of G on $\Gamma(G, S)$: for any two vertices $x, y \in \Gamma(G, S)$, and for any $g \in G, d_{S}(g \cdot x, g \cdot y)=$ $d_{S}(x, y)$.

Show that the quotient space for this action is homeomorphic to a bouquet of \#S circles.
Exercise 5. Let S and S^{\prime} be two different finite generating sets of a group G. Show that the Cayley graphs $\Gamma(G, S)$ and $\Gamma(G, S)$ are quasi-isometric.

Exercise 6. Show that the Cayley graph of a finite group is quasi-isometric to a point. More generally, every compact metric space is quasi-isometric to a point.

Exercise 7. Let $H \leq G$ be a finite index subgroup of G. Show that H is finitely generated if and only if G is.

Suppose that $G=\langle S\rangle$ and $H=\left\langle S^{\prime}\right\rangle$ are finitely generated. Show that the Cayley graphs $\Gamma(G, S)$ and $\Gamma\left(H, S^{\prime}\right)$ are quasi-isometric.
Exercise 8. Show that quasi-isometry is an equivalence relation.

Exercise 9. Let $\left(M, d_{g}\right)$ be a compact Riemannian manifold.
a) Show that it is possible to define a metric \widetilde{d}_{g} on the universal cover \widetilde{M} of M in such a way that the monodromy action of the fundamental group $\pi_{1}(M)$ on $\left(\widetilde{M}, \widetilde{d_{g}}\right)$ preserves the distances: $\pi_{1}(M)$ is a subgroup of the group of isometries of $\left(\widetilde{M}, \widetilde{d_{g}}\right)$.
b) Let $U \subset \widetilde{M}$ be a fundamental domain for the monodromy action: $U=\sigma(M)$, where $\sigma: M \longrightarrow \widetilde{M}$ is any continuous section of the covering projection $\widetilde{\pi}: \widetilde{M} \longrightarrow M$, that is σ is injective and $\pi \circ \sigma=\left.i d\right|_{M}$.
c) Show that the set

$$
S=\left\{s \in \pi_{1}(M) \mid s \neq i d \text { and } s \bar{U} \cap \bar{U} \neq \emptyset\right\}
$$

is finite.
d) Show that

$$
\inf \left\{\widetilde{d}_{g}(\bar{U}, x \bar{U}) \mid x \in \pi_{1}(M)-(S \cup\{i d\})\right\}=: 2 d
$$

is a minimum and strictly positive. Moreover, if $d_{g}(\bar{U}, x \bar{U})<2 d$ then $x \in S \cup\{i d\}$.
e) Let us fix $p \in \widetilde{M}$. For any $x \in \pi_{1}(M)$, denote by $[p, x . p]$ a geodesic path from p to x.p. Write

$$
k:=\left\lfloor\frac{\widetilde{d}_{g}(p, x \cdot p)}{d}\right\rfloor
$$

and let us take points

$$
y_{0}=p, y_{1}, \ldots, y_{k}, y_{k+1}=x . p
$$

on the geodesic curve $[p, x . p]$, such that $\widetilde{d}_{g}\left(y_{i}, y_{i+1}\right) \leq d$ for any $i=0, \ldots, k$. For any i, consider $h_{i} \in \pi_{1}(M)$ such that $y_{i} \in h_{i} \bar{U}$. Then $h_{i}^{-1} h_{i+1} \in S$.
This implies that S generates the fundamental group of $M: \pi_{1}(M)=\langle S\rangle$.
f) The set of points $\pi_{1}(M) \cdot p:=\left\{x . p \mid x \in \pi_{1}(M)\right\}$ is discrete in \widetilde{M} and there exists $D>0$ such that the neighbourhood of radius $2 D$,

$$
B_{2 D}\left(\pi_{1}(M) \cdot p\right)=\bigcup_{x \in \pi_{1}(M)} B_{2 D}(x \cdot p),
$$

is the whole manifold \widetilde{M}.
g) For any $x \in \pi_{1}(M)$, let $m:=\|x\|_{S}=d_{S}(i d, x)$. Show that

$$
\frac{1}{2 D} \widetilde{d}_{g}(p, x . p) \leq m \leq k+1 \leq \frac{1}{d} \widetilde{d}_{g}(p, x . p)+1,
$$

and hence $\left(\pi_{1}(M), d_{S}\right)$ and $\left(\widetilde{M}, \widetilde{d}_{g}\right)$ are quasi-isometric. This result is a theorem proved independenlty by Švarcz and Milnor.

