Groups, ends and trees: exercises II

Michele Triestino

2015-07-22

Exercise 1. Give examples of groups which are not the fundamental group of a closed surface.

Exercise 2. Draw a picture of the Cayley graph of $\mathbb{Z}_3 * \mathbb{Z}_4$.

Exercise 3. Let $G = \langle S \rangle$ be a group generated by the set *S*. For any $x \in G$, define its *word length* $||x||_S$ to be the length of the shortest word in the alphabet $S \cup S^{-1}$ that represents the element *x*:

 $||x||_{S} = \min\{n \mid \exists s_{1}, \dots, s_{n} \in S \cup S^{-1} \text{ s.t. } x = s_{1} \cdots s_{n}\}.$

Show that the function $d_S : G \times G \longrightarrow G$ defined by $d_S(x, y) = ||x^{-1}y||_S$ is a distance on *G* and coincides with the graph distance on the Cayley graph of *G* with respect to generating set *S*.

Exercise 4. Let $G = \langle S \rangle$ be a finitely generated group and let $\Gamma(G, S)$ be its Cayley graph, equipped with the graph distance d_S . Show that the multiplication in G defines a distance-preserving transitive action of G on $\Gamma(G, S)$: for any two vertices $x, y \in \Gamma(G, S)$, and for any $g \in G$, $d_S(g.x, g.y) = d_S(x, y)$.

Show that the quotient space for this action is homeomorphic to a bouquet of #S circles.

Exercise 5. Let *S* and *S'* be two different finite generating sets of a group *G*. Show that the Cayley graphs $\Gamma(G, S)$ and $\Gamma(G, S)$ are quasi-isometric.

Exercise 6. Show that the Cayley graph of a finite group is quasi-isometric to a point. More generally, every compact metric space is quasi-isometric to a point.

Exercise 7. Let $H \le G$ be a finite index subgroup of *G*. Show that *H* is finitely generated if and only if *G* is.

Suppose that $G = \langle S \rangle$ and $H = \langle S' \rangle$ are finitely generated. Show that the Cayley graphs $\Gamma(G, S)$ and $\Gamma(H, S')$ are quasi-isometric.

Exercise 8. Show that quasi-isometry is an equivalence relation.

Exercise 9. Let (M, d_q) be a compact Riemannian manifold.

- a) Show that it is possible to define a metric d_g on the universal cover \widetilde{M} of M in such a way that the monodromy action of the fundamental group $\pi_1(M)$ on $(\widetilde{M}, \widetilde{d}_g)$ preserves the distances: $\pi_1(M)$ is a subgroup of the group of isometries of $(\widetilde{M}, \widetilde{d}_g)$.
- b) Let $U \subset \widetilde{M}$ be a fundamental domain for the monodromy action: $U = \sigma(M)$, where $\sigma : M \longrightarrow \widetilde{M}$ is any continuous section of the covering projection $\widetilde{\pi} : \widetilde{M} \longrightarrow M$, that is σ is injective and $\pi \circ \sigma = id|_M$.
- c) Show that the set

$$S = \{s \in \pi_1(M) \mid s \neq id \text{ and } s\overline{U} \cap \overline{U} \neq \emptyset\}$$

is finite.

d) Show that

$$\inf\{\widetilde{d_g}(\bar{U}, x\bar{U}) \mid x \in \pi_1(M) - (S \cup \{id\})\} =: 2d$$

is a minimum and strictly positive. Moreover, if $d_q(\bar{U}, x\bar{U}) < 2d$ then $x \in S \cup \{id\}$.

e) Let us fix $p \in \widetilde{M}$. For any $x \in \pi_1(M)$, denote by [p, x.p] a geodesic path from p to x.p. Write

$$k := \lfloor \frac{\widetilde{d_g}(p, x.p)}{d} \rfloor$$

and let us take points

 $y_0 = p, y_1, \ldots, y_k, y_{k+1} = x.p$

on the geodesic curve [p, x.p], such that $\widetilde{d}_g(y_i, y_{i+1}) \leq d$ for any i = 0, ..., k. For any i, consider $h_i \in \pi_1(M)$ such that $y_i \in h_i \overline{U}$. Then $h_i^{-1}h_{i+1} \in S$.

This implies that *S* generates the fundamental group of *M*: $\pi_1(M) = \langle S \rangle$.

f) The set of points $\pi_1(M).p := \{x.p \mid x \in \pi_1(M)\}$ is discrete in \widetilde{M} and there exists D > 0 such that the neighbourhood of radius 2D,

$$B_{2D}(\pi_1(M).p) = \bigcup_{x \in \pi_1(M)} B_{2D}(x.p),$$

is the whole manifold \widetilde{M} .

g) For any $x \in \pi_1(M)$, let $m := ||x||_S = d_S(id, x)$. Show that

$$\frac{1}{2D}\widetilde{d_g}(p,x.p) \leq m \leq k+1 \leq \frac{1}{d}\widetilde{d_g}(p,x.p)+1,$$

and hence $(\pi_1(M), d_S)$ and $(\widetilde{M}, \widetilde{d_g})$ are quasi-isometric. This result is a theorem proved independently by Švarcz and Milnor.