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Exercise 1. Give examples of groups which are not the fundamental group of a closed surface.
Exercise 2. Draw a picture of the Cayley graph of Z3 * Z,.

Exercise 3. Let G = (S) be a group generated by the set S. For any x € G, define its word length ||x||s
to be the length of the shortest word in the alphabet S U S~! that represents the element x:

lIxlls = min{n | As1,...,5, € SUS st x =515,

Show that the function ds : G X G — G defined by ds(x,y) = ||x‘1y||5 is a distance on G and
coincides with the graph distance on the Cayley graph of G with respect to generating set S.

Exercise 4. Let G = (S) be a finitely generated group and let I'(G, S) be its Cayley graph, equipped
with the graph distance ds. Show that the multiplication in G defines a distance-preserving
transitive action of G on I'(G, S): for any two vertices x, y € I'(G, S), and for any g € G, ds(g9.x, 9.y) =
ds(x, y).

Show that the quotient space for this action is homeomorphic to a bouquet of #S circles.

Exercise 5. Let S and S’ be two different finite generating sets of a group G. Show that the Cayley
graphs I'(G, S) and I'(G, S) are quasi-isometric.

Exercise 6. Show that the Cayley graph of a finite group is quasi-isometric to a point. More generally,
every compact metric space is quasi-isometric to a point.

Exercise 7. Let H < G be a finite index subgroup of G. Show that H is finitely generated if and only
if G is.

Suppose that G = (S) and H = (S’) are finitely generated. Show that the Cayley graphs I'(G, S)
and I'(H, §’) are quasi-isometric.

Exercise 8. Show that quasi-isometry is an equivalence relation.



Exercise 9. Let (M, d;) be a compact Riemannian manifold.

a) Show that it is possible to define a metric cAl; on the universal cover M of M in such a way that the
monodromy action of the fundamental group 71(M) on (M, d,) preserves the distances: 71(M)
is a subgroup of the group of isometries of (M, d,).

b) LetU C M be a fundamental domain for the monodromy action: U = o(M), whereo : M — M
is any continuous section of the covering projection ™ : M — M, that is ¢ is injective and
oo = idy.

¢) Show that the set
S={sem(M)|s#idandsUnN U # 0}

is finite.
d) Show that _
inf{dg(U,xl_l) | x € (M) — (SU {id})} =: 2d

is a minimum and strictly positive. Moreover, if d,(U, xU) < 2d then x € S U {id).

e) Letusfixp e M. For any x € n1(M), denote by [p, x.p] a geodesic path from p to x.p. Write

d~g(p, x.p)

k:=1| 7

]

and let us take points
yO = ]9/ y1/ sy yk/ yk+1 = x'p

on the geodesic curve [p, x.p], such that %(yi, Yir1) < dforanyi =0,...,k For any i, consider
h; € (M) such that y; € i;U. Then i 'hy,q € S.

This implies that S generates the fundamental group of M: 111(M) = (S).

f) The set of points 711(M).p := {x.p | x € m1(M)} is discrete in M and there exists D > 0 such that
the neighbourhood of radius 2D,

Bap(mt1(M).p) = U Bap(x.p),
xem (M)

is the whole manifold M.

g) For any x € 111(M), let m := ||x||s = ds(id, x). Show that
Lo )<m<k+1<1£l'( ) +1
2D gP,X-P = = = d gplx‘p s

and hence (111(M), ds) and (]\71, ch) are quasi-isometric. This result is a theorem proved indepen-
denlty by Svarcz and Milnor.



