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Abstract. This article contains proofs of the results announced in [21] in the part concerning general
properties of oriented cohomology theories of algebraic varieties. It is constructed one-to-one corres-
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1. Introduction

The concept of oriented cohomology theory is well known in topology [1, Part II,
p. 37], [27, Chapter 1, 4.1.1]. An algebraic version of this concept was introduced
in [21] and is considered here. So in this article we consider a field k and the
category of pairs (X,U) with a smooth variety X over k and its open subset
U . By a cohomology theory we mean a contravariant functor A from this cat-
egory to the category of Abelian groups endowed with a functor transformation
∂: A(U) → A(X,U) and satisfying the localization, Nisnevich excision and
homotopy invariance properties (Definition 2.1).

We consider three structures a ring cohomology theory A can be equipped with:
an orientation on A, a Thom structure on A and a Chern structure on A. An ori-
entation on A is a rule ω assigning to each variety X and to each vector bundle
E/X a two-sided A(X)-module isomorphism A(X) → A(E,E − X) satisfying
certain natural properties (Definition 3.1) and called Thom isomorphisms. A Thom
structure on A is a rule assigning to each smooth variety X and each line bundle L

over X a class th(L) ∈ A(L,L − X) satisfying certain natural properties (Defini-
tion 3.3) and called the Thom class. A Chern structure on A is a rule assigning
to each smooth variety X and each line bundle L over X a class c(L) ∈ A(X)

satisfying certain natural properties (Definition 3.2) and called the first Chern class
(or some times called the Euler class [20]).
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2 I. PANIN

It is proved in this paper that for a given A these structures are in natural
bijections with each other. More precisely we construct the following
diagram

Orientations on A
ρ

����������������

Chern structures on A

δ

����������������
Thom structures on A

γ�� (1)

in which each arrow is a bijection and each round trip coincides with the identity
(Theorems 3.5, 3.35 and 3.36). The constructions of these arrows are described
briefly below in this section. One of the consequence of the theorem is this: the ex-
istence at least one of these structures on A implies the existence of an orientation
on A; an orientation on A is never defined by the ring cohomology theory itself,
even on usual singular cohomology there are plenty different orientations (see an
example below Section 1).

However in practice certain ring cohomology theories come equipped with
either a specific Chern structure or with a specific Thom structure. Thus they are
equipped with distinguished orientations. Say, usual singular cohomology with in-
tegral coefficients (on complex algebraic varieties) come equipped with the known
Chern structure, algebraic K-theory is equipped with a Chern structure as well
(L �→ [1] − [L∨]). The motivic cohomology H ∗(−,Z(∗)) is equipped with a
Chern structure. The algebraic cobordism theory MGL∗,∗ is equipped with a nat-
ural Thom structure. Thus these two theories are equipped with the corresponding
orientations. The algebraic cobordism theory MGL∗,∗ of Voevodsky [31] is one
of the main motivating example for this article, but it is expected to be written in
details later.

An oriented ring cohomology theory is a cohomology theory equipped with an
orientation in the sense above. As it was already mentioned to orient a ring theory
A is the same as to fix a Thom structure on A or to fix a Chern structure on A.
An orientation is usually denoted ω. The Thom structure corresponding to ω via
ρ is written often as L �→ thω(L). The Chern structure corresponding to ω via
γ ◦ ρ is written often as L �→ cω(L). An orientable ring cohomology theory is a
ring cohomology theory which can be equipped with an orientation. An oriented
cohomology theory is as well an oriented cohomology pretheory in the sense of
[20] because the integration constructed in [21], [23] is perfect in the sense of [20].

An example of a non-standard Chern structure on the usual singular cohomo-
logy with rational coefficients is given by the assignment L �→ 1 − exp(−c1(L)).
This Chern structure gives an integration on H ∗(−,Q) which, via the Chern char-
acter, respects the Chern structure on the algebraic K-theory given by L �→ [1] −
[L∨].

Following [19] and [24] each orientation ω on A gives rise to a commuta-
tive formal group law over the coefficient ring A(pt) of the theory. This is a
formal power series Fω ∈ A(pt)[[u1, u2]] in two variables such that for each
smooth variety X and each pair of line bundles L1, L2 over X one has the relation
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ORIENTED COHOMOLOGY THEORIES OF ALGEBRAIC VARIETIES 3

cω(L1 ⊗ L2) = Fω(cω(L1), cω(L2)) in A(X). The formal group law plays a key
rule in constructing push-forwards on A [21, 23] and is described in Section 3.9.

In the topological setting there is the universal oriented theory. It is the complex
cobordism equipped with a distinguished orientation [16, 25]. The corresponding
formal group law is the universal one [24]. Other examples of oriented theories
are the singular cohomology, the complex K-theory, the Brown–Peterson theory,
Morava K-theories, elliptic cohomology. Stable cohomotopy is a typical example
of an unorientable theory.

We now sketch the structure of the text. In Section 1.1 certain general nota-
tion are introduced. In Section 2 the notion of cohomology theory introduced in
[21] is recalled and general properties of a cohomology theory are proved. The
deformation to the normal cone construction is recalled in Section 2.2.7 as well.
An analog of the purity theorem from [18] is proved (Theorem 2.2). The canonical
isomorphism A(X,X−Z) ∼= A(N,N−Z) from Theorem 2.2 one should consider
as a replacement of the excision isomorphism for a tubular neighborhood (well
known in the topology). Although Theorem 2.2 is not used in the present article, it
is very useful for the construction of an integration on a given oriented cohomology
theory. In the end of the section we recall the notion of a ring cohomology theory
[21].

In Section 3 we construct the triangle of correspondences ρ, γ , δ mentioned
above (see Theorems 3.5, 3.35 and 3.36). Proofs of these three theorems use
Theorem 3.9, the Splitting principle (Lemma 3.24) and higher Chern classes
Theorem (3.27). In the very end of the section it is shown how an orientation ω

on the theory A gives rise to the formal group law Fω over the coefficient ring of
A.

Since the text is rather long it is reasonable to sketch here our constructions of
the assignments γ , ρ and δ.

Suppose we are given with a Thom structure L/X �→ th(L) ∈ A(L,L−X) on
A. For the zero section z: X → L of a line bundle L over X set c(L) = zA(th(L)) ∈
A(X) (the pull-back of the element th(L) under the inclusion (X,∅) ↪→ (L,L −
X)). The assignment L �→ c(L) is the Chern structure on A corresponding via γ

to the Thom structure (see Theorem 3.5).
Suppose we are given with an orientation ω. For a line bundle L over a smooth

X consider the image th(L) ∈ A(L,L − X) of the unit 1 ∈ A(X) under the
Thom isomorphism A(X) → A(L,L − X) determined by the orientation ω. The
assignment L �→ th(L) ∈ A(L,L− X) is the Thom structure corresponding via ρ

to the orientation ω (see Theorem 3.36).
Suppose we are given with a Chern structure L �→ c(L) on A. In this case

the Projective bundle theorem holds (see Theorem 3.9) and there is a Chern class
theory E �→ cn(E) with values in A. To produce an orientation ω on A we associate
to each vector bundle E/X its Thom class th(E) ∈ A(E,E−X). Firstly for a rank
n vector bundle E we consider the vector bundle F = 1 ⊕E, the projective bundle
p: P(F ) → X, the tautological line bundle OF (1) on it and set

t̄h(E) := cn(OF (1) ⊗ p∗(E)) ∈ A(P(F )).
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4 I. PANIN

It turns out that the element t̄h(E) belongs to the subgroup A(P(F ),P(F ) − P(1))
of the group A(P(F )). The class th(E) is defined as the image of the element t̄h(E)

under the excision isomorphism identifying A(P(F ),P(F )−P(1)) with A(E,E−
X). The required orientation ω on A is given by the assignment which associate
to a vector bundle p: E → X the map (∪ th(E)) ◦ pA: A(X) → A(E,E − X).
Details are given in the proof of Theorem 3.35.

There is another class thnaive(E) ∈ A(E,E − X) which is quite often used in
literature. It is constructed as the image under the mentioned excision isomorphism
of the class

t̄hnaive(E) =
n∑

k=0

(−1)n−kcn−k(E)ξk ∈ A(P(F )),

where ξ = c(OF (−1)) is the first Chern class of the tautological line bundle on
P(F ). The assignment E �→ thnaive(E) gives an orientation too. However in this
case the assignment L �→ c′(L) = zA(thnaive(L)) ∈ A(X) is a Chern structure on
A which is in general different of the one we began with. If the Chern structure
L �→ c(L) satisfies the additivity property, that is c(L1 ⊗ L2) = c(L1) + c(L2),
then thnaive(E) = th(E) and c(L) = c′(L).

To simplify technicalities a reader may assume through the text that

• all cohomology theories in the sense of Definition 2.1 take values in the cat-
egory of Z/2-graded Abelian groups and grade-preserving homomorphisms,
the boundary operator ∂ is either grade-preserving or of the degree +1 and
moreover,

• all ring cohomology theories in the sense of Definition 2.13 are Z/2-graded-
commutative ring theories, i.e. for any a ∈ Ap(P ) and b ∈ Aq(Q) one has the
relation a × b = (−1)pqb × a in Ap+q(P × Q),

• all Thom isomorphisms in the sense of Definition 3.1 are grade-preserving and
all Thom and Chern classes are of even degree,

• ‘a universally central elements’ is just ‘an even degree element’.

Following these simplifications the reader should replace everywhere through the
text the concept of ‘universally central elements’ (see Definition 2.15) by the
concept of ‘even degree elements’. For instance the reader should replace the ring
Auc(X) of all universally central elements by the ring Aev(X) of all even degree
elements.

1.1. TERMINOLOGY AND NOTATION

Let k be a field. The term ‘variety’ is used in this text to mean a reduced quasi-
projective scheme over k. If X is a variety and U ⊂ X is a Zariski open then
Z := X − U is considered as a closed subscheme with a unique structure of
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ORIENTED COHOMOLOGY THEORIES OF ALGEBRAIC VARIETIES 5

the reduced scheme, so Z is considered as a closed subvariety of X. We fix the
following notation:

• Ab – the category of Abelian groups;
• Sm – the category of smooth varieties;

SmOp – the category of pairs (X,U) with smooth X and open U in X. Morph-
isms are morphisms of pairs.

We identify the category Sm with a full subcategory of SmOp assigning to a
variety X the pair (X,∅):

• pt = Spec(k);
For a smooth X and an effective divisor D ⊂ X we write L(D) for a line
bundle over X whose sheaf of sections is the sheaf LX(D) (see [9, Chapter II,
Section 6, 6.13]).
P(V ) = Proj(S∗(V ∨)) – the space of lines in a finite-dimensional k-vector
space V ; LV = OV (−1) – the tautological line bundle over P(V );
1X – the trivial rank 1 bundle over X, often we will write 1 for 1X;

• P(E) – the space of lines in a vector bundle E;
LE = OE(−1) – the tautological line bundle on P(E);
E0 – the complement to the zero section of E;
E∨ – the vector bundle dual to E;
z: X → E – the zero section of a vector bundle E;

• For a contravariant functor A on Sm set
A(P∞) = lim←−A(P(V )), (2)

where the projective system is induced by all the finite-dimensional vector
subspaces V ↪→ k∞.

Similarly set
A(P∞ × P∞) = lim←−A(P(V ) × P(W)),

where the projective system is induced by all the finite-dimensional subspaces
V,W ⊂ k∞.

2. Cohomology Theories

DEFINITION 2.1. A cohomology theory is a contravariant functor SmOp
A−→ Ab

together with a functor morphism ∂: A(U) → A(X,U) satisfying the following
properties

1. Localization: the sequence A(X)
jA−→ A(U)

∂P−→ A(X,U)
iA−→ A(X)

jA−→
A(U) is exact for each pair P = (X,U) ∈ SmOp, where j : U ↪→ X and
i: (X,∅) ↪→ (X,U) are the natural inclusions.

2. Excision: the operator A(X,U) → A(X′, U ′) induced by a morphism e:
(X′, U ′) → (X,U) is an isomorphism, if the morphism e is etale and for
Z = X − U , Z′ = X′ − U ′ one has e−1(Z) = Z′ and e: Z′ → Z is an
isomorphism.
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6 I. PANIN

3. Homotopy invariance: the operator A(X) → A(X × A1) induced by the pro-
jection X × A1 → X is an isomorphism.

The operator ∂P is called the boundary operator and is written usually as ∂ .
A morphism of cohomology theories ϕ: (A, ∂A) → (B, ∂B) is a functor trans-

formation ϕ: A → B commuting with the boundary morphisms in the sense that
for every pair P = (X,U) ∈ SmOp one has ∂BP ◦ ϕU = ϕP ◦ ∂AP .

We write also AZ(X) for A(X,U), where Z = X − U , and call the group
AZ(X) cohomology of X with the support on Z. The operator

AZ(X)
iA−→ A(X) (3)

is called the support extension operator for the pair (X,U).

We do not assume at all in this text that cohomology theories are graded and the
boundary operator is of degree +1. We do not assume this in particular because it
is never used below and it is even inconvenient to assume this for certain points.

One could replace in this definition the category of Abelian group by any
Abelian category or even by additive one which is equipped with Kernels and
Cokernels for projectors. We left such a replacement to a reader to avoid tech-
nicalities as much as it is possible.

2.1. EXAMPLES

Consider a number of examples.

2.1.1. Classical Singular Cohomology
Let k = C and let A be an Abelian group. Let (X,U) �→ ⊕∞−∞Hp(X(C), U(C);A)
be the usual singular cohomology (with coefficients in A) of the pair of the complex
point sets with respect to the complex topology. Take as a boundary ∂ the usual
boundary map ∂ (see for instance [29]).

2.1.2. A Generalized Cohomology Theory
Let k = C and let (X,U) �→ ⊕∞

p=−∞Ep(X(C), U(C)) be a generalized cohomo-
logy theory say represented by a spectrum E with the usual boundary map ∂ (see
for instance [1] or [29, 8.33]).

2.1.3. Singular Cohomology of the Real Point Sets
Let k = R and let A be an Abelian group (X,U) �→ ⊕∞

0 Hp((X(R), U(R);A)
be the usual singular cohomology (with coefficients in A) of the pair of real points
set considered with respect to the strong topology. Take as a boundary ∂ the usual
boundary map for the pair (X(R), U(R)).
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ORIENTED COHOMOLOGY THEORIES OF ALGEBRAIC VARIETIES 7

2.1.4. Witt Theory of Balmer
Let (X,X − Z) �→ ⊕∞

p=−∞W
p

Z(X) be the Witt functor defined in [2]. Clearly it is
a cohomology theory in the sense of Definition 2.1.

2.1.5. Bloch’s Higher Chow Groups
Let (X,X−Z) �→ ⊕∞

p=−∞ ⊕∞
q=−∞CH

p

Z(X, q) be the higher Chow groups defined
in [3]. Clearly it is a cohomology theory in the sense of Definition 2.1.

2.1.6. Motivic Cohomology of M. Levine
Clearly it is a cohomology theory in the sense of Definition 2.1 [15].

2.1.7. Etale Cohomology
Let F be a locally constant torsion sheaf on the etale k-situs and assume that
char(k) is prime to the torsion of F . In this example An(X,U) = Hn

Z(Xet, F )

[17, 3.1] and ∂ is defined in [17, 3.1.25]. The localization property for the pair
(A, ∂) is proved in [17, 3.1.25], the excision property is proved in [17, 3.1.27] and
the homotopy invariance is proved in [17, 6.4.20].

2.1.8. K-theory
Algebraic K-theory also can be fitted to Definition 2.1. To do this use, for in-
stance, K-groups with support Kn(XonZ) (n� 0) of [30]. So set An(X,U) =
K−n(XonZ), where Z = X − U . Further set A(X,U) = ⊕∞

n=0A
n(X,U). The

definition of ∂ and the exactness of the localization sequence are contained in [30,
Theorem 5.1] (except the surjectivity of the restriction A0(X) → A0(U)). If X

is quasi-projective then K(XonX) coincides with the Quillen’s K-groups KQ
n (X)

by [30, 3.9, 3.10]. This proves in particular the homotopy invariance An(X) for
smooth X. The excision property for A follows from [30, 3.19]. It remains now
to check the surjectivity of the restriction A0(X) → A0(U). Clearly A0(X) =
K

Q

0 (X) coincides with the Grothendieck group of the vector bundles on X. Since
X is smooth the desired surjectivity follows from [4, Section 8, Proposition 7].
Thus (A, ∂) satisfies Definition 2.1.

2.1.9. Motivic Cohomology
Here A

C,p
Z (X) = H

p

Z(X,C) := HomDM−(k)(MZ(X),C[p]) is the motivic cohomo-
logy with coefficients in a motivic complex C ∈ DM−(k) [28], where the
motive MZ(X) with supports on Z is defined in [28, the text just below the proof
of Theorem 4.8]. The motive MZ(X) is identified with the complex C∗(Ztr(X)/

Ztr(X −Z)) in the proof of Lemma 4.11 in [28]. Set AC
Z(X) = ⊕∞−∞A

C,p
Z (X). The

boundary operator ∂ which we denote in this example ∂C is defined in [28, ??].
The homotopy invariance property holds by [28, Proposition 4.2]. The excision

property is proved in [28, the proof of Lemma 4.11]. The localization property
follows from the exactness of the complex

0 → Ztr(X − Z) → Ztr(X) → Ztr(X)/Ztr(X − Z) → 0
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8 I. PANIN

because the functor C∗ takes short exact sequences to exact triangles [28,
Theorem 1.12].

2.1.10. Semi-topological Complex and Real K-theories [6]
If the ground field k is the field R of reals then the semi-topological K-theory of
real algebraic varieties KRsemi defined in [6] is a cohomology theory as it is proved
in [6].

2.1.11. Representable Theories
Here Ap(X,U) = ⊕qE

p,q(X/U), where E is a T -spectrum [31]. Set A(X,U) =
⊕∞−∞Ap(X,U). The boundary operator is described in [31] and is defined via the
triangulated structure on the stable homotopy category [31]. In particular, in the
case E = MGL [31, Section 6.3] we obtain the algebraic cobordism theory.

2.2. GENERAL PROPERTIES OF COHOMOLOGY THEORIES

We specify here certain properties of an arbitrary cohomology theory A which are
useful below in the text.

2.2.1.
The localization property implies that A∅(X) = A(X,X) = 0. Therefore A(∅) =
A∅(∅) = 0.

2.2.2.
If any two of morphisms (X,U) → (Y, V ), X → Y , U → V , defined by a
morphism f : (X,U) → (Y, V ), induce isomorphisms on A-cohomology then the
third of these morphisms induces an isomorphism on A-cohomology.

2.2.3. Localization Sequence for a Triple
Let T ⊂ Y ⊂ X be closed subsets of a smooth variety X. Let ∂: A(X − T ) →
AT (X) be the boundary map for the pair (X,X − T ). Consider the support exten-
sion map eA: AY−T (X−T ) → A(X−T ) and set ∂Y,T = ∂ ◦ eA: AY−Z(X−Z) →
AT (X).

We claim that the sequence

· · · → AT (X)
α−→ AY (X)

β−→ AY−T (X − T )
∂Y,T−−→ AT (X)

γ−→ AY (X) → · · ·

with the obvious mappings α, β and γ is a complex and moreover it is exact. We
call this sequence the localization sequence for the triple (X,X − T ,X − Y ). If
Y = X, then this sequence coincides with the localization sequence for the pair
(X,X − T ).
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ORIENTED COHOMOLOGY THEORIES OF ALGEBRAIC VARIETIES 9

If U ⊂ X−T is an open containing Y −T then the pull-back AY−T (X−T ) →
AY−T (U) is an isomorphism by the excision property. So replacing AY−T (X − T )

by AY−T (U) we get an exact sequence

· · · → AT (X)
α−→ AY (X)

β−→ AY−T (U)
∂Y,T−−→ AT (X)

γ−→ AY (X) → · · ·.
We call it the localization sequence for the triple (X,U,X − Y ).

2.2.4. Mayer–Vietoris Sequence
If X = U1 ∪ U2 is a union of two open subsets U1 and U2 and if Y is a closed
subset in X, then set Ti = Y − Ui , Yi = Y ∩ Ui = Y − Ti , U12 = U1 ∩ U2

and Y12 = U12 ∩ Y . Consider the morphism of the localization sequences for the
triples (X,U1, X−Y ) and (U2, U12, U2 −Y ) induced by the inclusion of the triples
(U2, U12, U2 − Y2) ⊂ (X,U1, X − Y )

AY (X)
α1−−−→ AY1(U1) −−−→ AT1(X)

eA−−−→ AY (X)

α2

� β1

� γ

�
�

AY2(U2)
β2−−−→ AY12(U12)

∂−−−→ AT1(U2) −−−→ AY2(U2).

The map γ is an isomorphism by the excision property. Set d = eA ◦ γ −1 ◦
∂: AY12(U12) → AY (X). We claim that the sequence

· · · → An
Y (X)

α1+α2−−−→ An
Y1
(U1) ⊕ An

Y2
(U2)

(β1,−β2)−−−−→ An
Y12

(U12)
d−→ An+1

Y (X) → · · ·
is exact and call this sequence the Mayer–Vietoris sequence of the open covering
X = U1 ∩ U2. The proof of the exactness is straightforward and we skip it.

The Mayer–Vietoris sequence is natural in the following sense. If f : X′ → X

is a morphism and X′ = U ′
1 ∪ U ′

2 is a Zariski covering of X′ such that f (U ′
i ) ⊂ Ui

and if Y ′ is a closed subset in X′ containing f −1(Y ), then the pull-back mappings
f A: AY (X) → AY ′(X′), f A: AYi (Ui) → AY ′

i
(U ′

i ), f
A: AY12(U12) → AY ′

12
(U ′

12)

form a morphism of the corresponding Mayer–Vietoris sequences.

2.2.5.
Let ir : Xr ↪→ X1 �X2 be the natural inclusion (r = 1, 2). Let Yr ⊂ Xi be a closed
subset for (r = 1, 2). Then the induced map AX1�X2(X1 � X2) → AY1(X1) ⊕
AY2(X2) is an isomorphism.

Proof. This follows from the Mayer–Vietoris property and the fact that
A∅(∅) = 0.

2.2.6. Strong Homotopy Invariance
Let p: T → X be an affine bundle (i.e., a torsor under a vector bundle). Let Z ⊂ X

be a closed subset and let S = p−1(Z). Then the pull-back map pA: AZ(X) →
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10 I. PANIN

AS(T ) is an isomorphism. If s: X → T is a section then the induced operator
sA: AS(T ) → AZ(X) is an isomorphism as well.

Proof. First consider the case Z = X. Then S = T and we have to check that
the pull-back map pA: A(X) → A(T ) is an isomorphism. Choose a finite Zariski
open covering X = ∪Ui such that Ti = p−1(Ui) is isomorphic to the trivial vector
bundle over each Ui and then use the morphism of the Mayer–Vietoris sequences
and the homotopy invariance property of the cohomology theory A.

To prove the general case consider the localization sequences for the pairs
(X,X − Z) and (T , T − S). The pull-back mappings form a morphism of these
two long exact sequences. The 5-Lemma completes the proof.

2.2.7. Deformation to the Normal Cone
The deformation to the normal cone is a well-known construction (for example,
see [7]). Since the construction and its property (6) play an important role in what
follows we give here some details.

Let i: Y ↪→ X be a closed imbedding of smooth varieties with the normal
bundle N . There exists a smooth variety Xt together with a smooth morphism
pt : Xt → A1 and a closed imbedding it : Y × A1 ↪→ Xt such that the map pt ◦ it
coincides with the projection Y × A1 → A1 and

• the fiber of pt over 1 ∈ A1 is canonically isomorphic to X and the base
change of it by means of the imbedding 1 ↪→ A1 coincides with the imbedding
i: Y ↪→ X;

• the fiber of pt over 0 ∈ A1 is canonically isomorphic to N and the base change
of it by means of the imbedding 0 ↪→ A1 coincides with the zero section
Y ↪→ N .

Thus we have the diagram

(N,N − Y )
i0−→ (Xt,Xt − Y × A1)

i1←− (X,X − Y ). (4)

Here and further we identify a variety with its image under the zero section of any
vector bundle over this variety.

Let us recall a construction of Xt , pt and it . For that take X′
t to be the blow-up of

X× A1 with the center Y × {0}. Set Xt = X′
t − X̃, where X̃ is the proper preimage

of X × {0} under the blow-up map. Let σ : Xt → X × A1 be the restriction of the
blow-up map σ ′: X′

t → X × A1 to Xt and set pt to be the composition of σ and
the projection X × A1 → A1.

The proper preimage of Y × A1 under the blow-up map is mapped isomorph-
ically to Y × A1 under the blow-up map. Thus the inverse isomorphism gives the
desired imbedding it : Y × A1 ↪→ Xt (observe that it (Y × A1) does not cross X̃).

It is not difficult to check that the imbedding it satisfies the mentioned two
properties (the preimage of X × 0 under the map σ ′ consists of two irreducible
components: the proper preimage of X and the exceptional divisor P(N ⊕1). Their
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intersection is P(N) and it (Y ×A1) crosses P(N⊕1) along P(1) = the zero section
of the normal bundle N).

We claim that the diagram (4) consists of isomorphisms on the A-cohomology.

THEOREM 2.2. The following diagram consists of isomorphisms

AY (N)
iA0←− AY×A1(Xt )

iA1−→ AY (X). (5)

Moreover for each closed subset Z ⊂ Y the following diagram consists of iso-
morphisms as well

AZ(N)
iA0←− AZ×A1(Xt)

iA1−→ AZ(X). (6)

This theorem is analogous to the Homotopy Purity Theorem from [18,
Theorem 3.2.3]. The proof is postponed until Section 2.3. Now we state and prove
the following corollary.

COROLLARY 2.3. Let j0: P(1 ⊕ N) ↪→ X′
t be the imbedding of the exceptional

divisor into X′
t and let j1 = et ◦ i1 : X ↪→ X′

t , where et : Xt ↪→ X′
t is the open

inclusion. Then the diagram

AP(1)(P(1 ⊕ N))
jA0←− AY×A1(X′

t )
jA1−→ AY (X) (7)

consists of isomorphisms.
Proof. Consider the commutative diagram

AP(1)(P(1 ⊕ N))
jA0←−−− AY×A1(X′

t )

eA

�
�eAt

AY (N)
iA0←−−− AY×A1(Xt),

where the vertical arrows are the obvious pull-backs. These vertical arrows are
isomorphisms by the excision property. The operator iA0 is an isomorphism by the
first item of Theorem 2.2. Thus the operator jA0 is an isomorphism.

2.2.8.
Let X be a smooth variety and let L be a line bundle over X. Let E = 1⊕L and let
īL: X = P(L) ↪→ P(E) be the closed imbedding induced by the direct summand

L of E. Let AP(1)(P(E))
iA−→ A(P(E)) be the support extension operator and let

īAL : A(P(E)) → A(P(L)) be the pull-back operator. We claim that the following
sequence

0 → AP(1)(P(E))
iA−→ A(P(E))

īAL−→ A(P(L)) → 0. (8)

is exact.
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To prove this consider U = P(E)−P(1) with the open inclusion j : U ↪→ P(E)

and observe that U becomes a line bundle over X by means of the linear projection
q: U → P(L) = X (the line bundle is isomorphic to L∨) The obvious inclusion
iL: P(L) ↪→ U is just the zero section of this line bundle, īL = j ◦ iL and the
pull-back operator iAL : A(U) → A(P(L)) is an isomorphism (the inverse to the
one qA).

Now consider the pair (P(E),U). By the localization property (Definition 2.1)
the following sequence

· · · → AP(1)(P(E))
iA−→ A(P(E))

jA−→ A(U) → · · ·

is exact. If P(E)
p−→ X is the natural projection then the operator pA ◦ iAL : A(U) →

A(P(E)) splits jA. This implies the surjectivity of jA and the injectivity of iA. To
proof that the sequence (8) is short exact it remains to recall that the operator iAL is
an isomorphism and īL = j ◦ iL.

2.2.9.
We use here the notation from Section 2.2.7. Let et : Xt ↪→ X′

t be the open inclusion
and let p: P(1⊕N) → Y be the projection and let s: Y → P(1⊕N) be the section
of the projection identifying Y with the subvariety P(1) in P(1⊕N). The following
commutative diagram will be repeatedly used below in the text

P(1 ⊕ N)
j0−−−→ X′

t

j1←−−− X

s

� It

�
�i

Y
k0−−−→ Y × A1 k1←−−− Y,

where It = et ◦ it and j0 is the inclusion of the exceptional divisor and j1 =
et ◦ i1 and k0, k1 are the closed imbedding given by y �→ (y, 0) and y �→ (y, 1)
respectively.

LEMMA 2.4. (Useful lemma). Under the notation from Section 2.2.7 let jt : Vt =
X′

t −Y × A1 → X′
t be the inclusion. If the support extension operator AP(1)(P(1 ⊕

N)) → A(P(1 ⊕ N)) is injective then

Ker(jA0 ) ∩ Ker(jAt ) = (0),

in the other words the operator

jA0 ⊕ jAt : A(X′
t ) → A(P(1 ⊕ N)) ⊕ A(Vt )

is monomorphism. In particular this holds if Y is a divisor on X.
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Proof. Consider the commutative diagram

A(P(1 ⊕ N))
jA0←−−− A(X′

t )

α

�
�αt

AP(1)(P(1 ⊕ N))
jA0←−−− AY×A1(X′

t ),

where α and αt are the support extension operators. The bottom operator jA0 is an
isomorphism by Corollary 2.3. The map α is injective by the very assumption (if Y
is a divisor in X then α is injective by (8)). Since the composition jA0 ◦αt coincides
with the one α ◦ jA0 it is injective as well.

The localization sequence for the pair (X′
t , Vt ) shows that Ker(jAt ) = Im(αt).

The lemma follows.

2.2.10.
Let i: P(V ) ↪→ P(W) and j : P(V ) ↪→ P(W) be two linear imbeddings (imbed-
dings induced by linear imbeddings V into W ). If the dimension of V is strictly
less than the dimension of W , then iA = jA: A(P(W)) → A(P(V )).

In fact, in this case there exists a linear automorphism φ of W which has the
determinant 1 and such that j = φ ◦ i. Since φ is a composite of elementary
matrices and each elementary matrix induces the identity automorphism A(P(W))

(by the homotopy invariance of A) one gets the relation φA = id. Therefore jA =
iA ◦ φA = iA.

2.3. PROOF OF THEOREM 2.2

Proof. Basically the proof mimics the arguments used for the proof of the Ho-
motopy Purity Theorem [18, Theorem 3.2.3]. Since the proof of the second asser-
tion will be left to the reader the proof of the first one will be given in details. We
start with certain observations concerning elementary properties of the deformation
to the normal cone construction. Namely, if U and V are Zariski open subsets of
X, then the following holds

(a) Ut ∩ Vt = (U ∩ V )t ;
(b) Ut ∪ Vt = (U ∪ Vt);
(c) if an etale morphism e: (X̃, X̃ − Ỹ ) → (X,X − Y ) satisfies the hypotheses of

the excision property (Definition 2.1), then the induced morphism et : (X̃t , X̃−
Ỹ × A1) → (Xt,Xt − Y × A1) satisfies as well the hypotheses of the excision
property.

To prove the theorem, we will need the lemma and four claims below.

LEMMA 2.5. If X = Y×An and Y = Y×{0} ↪→ Y×An then iA1,X: AY×A1(Xt ) →
AY (X) is an isomorphism.

549.tex; 27/10/2003; 16:37; p.13



14 I. PANIN

DEFINITION 2.6. An open subset U in X is called good if there exists a diagram

(U,U − YU)
e←−−− (T , T − S)

f−−−→ (YU × An, YU × An − YU × {0})
with YU = Y ∩ U and with morphisms e and f satisfying the hypotheses of the
excision property (Definition 2.1).

NOTATION 2.7. We write below in this proof i1,U for the imbedding U ↪→ Ut

from the deformation to the normal cone construction for the pair (U, YU). We will
write below in the proof of theorem iA1,U for the pull-back map iA1,U : AYU×An(Ut) →
AYU (U).

CLAIM 2.8. If U ⊂ X is good then the pull-back map iA1,U : AYU×An(Ut) →
AYU (U) is an isomorphism.

CLAIM 2.9. If an open subset U in X is good then each open subset V in U is
good as well.

CLAIM 2.10. If an open subset U in X is good and if V ⊂ X is an open subset
such that the pull-back map iA1,V is an isomorphism, then the pull-back map iA1,U∪V
is an isomorphism as well.

CLAIM 2.11. For each point x ∈ X there exists a good Zariski open neighborhood
U of the point x.

Assuming for a moment Lemma 2.5 and these four claims one can complete the
proof of theorem as follows. By the fourth claim there exists a finite Zariski open
covering X = ∪n

i=1Ui with good open subsets Ui . Claim 2.8 states that the pull-
back map iA1,U1

is an isomorphism. Suppose for V = ∪k
i=1Ui the pull-back map iA1,V

is an isomorphism. Since the open subset Uk+1 is good Claim 2.10 shows that the
pull-back map iA1,W is an isomorphism for W = ∪k+1

i=1Ui . The induction by k shows
that the pull-back map iA1 is an isomorphism.

It remains to prove Lemma 2.5 and four claims.

Proof of Lemma 2.5. Let F/Y be a vector bundle and let F ′ be the blow-up
of F at the zero section. The variety F ′ coincides with the total space of the line
bundle OF (−1) over P(F ). Let qF : F ′ → P(F ) be projection of the line bundle to
its base P(F ).

If F = 1⊕E for a vector bundle E over Y then one has the following commuta-
tive diagram

E′ −−−→ F ′ ←−−− F ′ − E′ ←−−− P(1) × A1

qE

� qF

� q

� pr

�

P(E) −−−→ P(F ) ←−−− P(F ) − P(E) ←−−− P(1),
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in which all the vertical arrows are the projections of the line bundles to their
bases. Section 2.2.6 shows that the pull-back map qA: AP(1)(P(F ) − P(E)) →
AP(1)×A1(F ′ − E′) is an isomorphism.

The projection q has two sections s0 and s1. The section s0 is the zero section
and the section s1 is given by x �→ (x, 1). Since q ◦ s0 = id the pull-back map
sA0 : AP(1)×A1(F ′ −E′) → AP(1)(P(F )−P(E)) is an isomorphism. Since q◦s1 = id
the pull-back map sA1 : AP(1)×A1(F ′−E′) → AP(1)(P(F )−P(E)) is an isomorphism
as well.

Now take X = E and Y = the zero section of E. Observe that the space Xt

coincides with the variety F ′ − E′, the imbedding i1: X ↪→ Xt coincides with the
section s1: E ↪→ F ′ − E′. The normal bundle N = NE/Y to Y in E coincides
with bundle E itself and the imbedding i0: N ↪→ Xt coincides with the section
s0: E ↪→ Xt . Finally the variety Y×A1 coincides with P(1)×A1 and the imbedding
Y × A1 ↪→ Xt coincides with the imbedding P(1) × A1 ↪→ F ′ − E′. Therefore
both maps in the diagram

AY (E) = AY (N)
iA0←− AY×A1(Xt)

iA1−→ AY (E)

are isomorphisms. In particular these two maps are isomorphisms for the case of
the trivial bundle E = An × Y . Thus we proved lemma.

Proof of Claim 2.8. The claim follows immediately from lemma and the prop-
erty (c) of the deformation to the normal cone construction.

Proof of Claim 2.9. To prove this claim consider a diagram

(U,U − YU)
e←−−− (T , T − S)

f−−−→ (YU × An, YU × An − YU × {0})
with morphisms e and f satisfying the hypotheses of the excision property. Let
V ⊂ U be an open subset. Set T = e−1(V ) ∩ f −1(YU × An) and S = f −1(YU).
Then S = f −1(YU × {0}) and in the diagram

(V , V − YV )
eV←−−− (T , T − S)

fV−−−→ (YV × An, YV × An − YV × {0})
the morphisms eV and fV satisfy the hypotheses of the excision property as well.
Thus the open subset V is good.

Proof of Claim 2.10. This claim follows immediately from the properties (a)
and (b) and the first claim comparing the Mayer–Vietoris sequence for U ∪V with
the one for Ut ∪ Vt .

Proof of Claim 2.11. This claim is proved in [32, Lemma ??].

Comment to the second assertion of theorem.
Recall that a Nisnevich neighborhood of a closed subset Y in X is an etale

morphism π : X′ → X such that for Y ′ = π−1(Y ) the restriction map π : Y ′ → Y
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16 I. PANIN

is an isomorphism. Clearly if π is a Nisnevich neighborhood of Y then for each
closed subset Z in Y the map π is a Nisnevich neighborhood of the subset Z as
well.

Recall as well that for any vector bundle p: E → X and any its section s and
any closed subset Z ⊂ X the two pull-back maps pA: AZ(X) → Ap−1(Z)(E) and
sA: Ap−1(Z)(E) → AZ(X) are isomorphisms inverse of each other.

These two observations shows that the proof of the first assertion of theorem
works as well for the second assertion of theorem.

2.4. RING COHOMOLOGY THEORIES

DEFINITION 2.12. Let P = (X,U),Q = (Y, V ) ∈ SmOp. Set P × Q =
(X × Y,X × V ∪ U × Y ) ∈ SmOp. This product is associative with the obvious
associativity isomorphisms. The unit of this product is the variety pt .

This product is commutative with the obvious isomorphisms P ×Q ∼= Q × P .

DEFINITION 2.13. One says that a cohomology theory A is a ring cohomology
theory if for every P,Q ∈ SmOp there is given a natural bilinear morphism called
cross-product

×: A(P ) × A(Q) → A(P × Q)

which is functorial in both variables and satisfies the following properties

1. associativity: (a × b) × c = a × (b × c) ∈ A(P × Q × R) for a ∈ A(P ),
b ∈ A(Q), c ∈ A(R);

2. there is given an element 1 ∈ A(pt) such that for any pair P ∈ SmOp and any
a ∈ A(P ) one has 1 × a = a = a × 1 ∈ A(P );

3. partial Leibnitz rule: ∂P×Y (a × b) = ∂P (a) × b ∈ A(X × Y,U × Y ) for a pair
P = (X,U) ∈ SmOp, smooth variety Y and elements a ∈ A(U), b ∈ A(Y ).

Given cross-products define cup-products ∪: AZ(X) × AZ′(X) → AZ∩Z′(X)

by

a ∪ b = ?A(a × b), (9)

where ?: (X,U ∪ V ) ↪→ (X × X,X × V ∪ U × X) is the diagonal. Clearly
cup-products thus defined are bilinear and functorial in both variables. These cup-
products are associative as well: (a ∪ b) ∪ c = a ∪ (b ∪ c); the element pA(1) ∈
A(X), (here p is the projection X →pt) is the unit for the cup-products
∪: AZ(X) × A(X) → AZ(X) and ∪: A(X) × AZ(X) → AZ(X); and a partial
Leibnitz rule holds: ∂(a ∪ b) = ∂(a) ∪ b for a ∈ A(U), b ∈ A(X).

Given cup-products one can construct cross-products by a×b = pA
X(a) ∪ pA

Y (b)

for a ∈ A(X,U) and b ∈ A(Y, V ). Clearly these two constructions are inverse each
to other. Thus having products of one kind we have products of the other kind and
can use both products in the same time.
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DEFINITION 2.14. A ring morphism ϕ: (A, ∂A,×A, 1A) → (B, ∂B,×B, 1B) of
ring cohomology theories is a morphism ϕ: (A, ∂A) → (B, ∂B) of the underlying
cohomology theories which takes the unit 1A to the unit 1B and commutes with the
cross-products: ϕ(1A) = 1B ∈ B(pt) and for every pairs P,Q ∈ SmOp and every
elements a ∈ A(P ), b ∈ A(Q) one has ϕP×Q(a × b) = ϕ(a)×ϕ(b) ∈ B(P ×Q).

DEFINITION 2.15. Let A be a ring cohomology theory and let X be a smooth
variety. An element a ∈ A(X) is called universally central if for any smooth variety
X̃ and any morphism f : X̃ → X the element f A(a) is central in A(X̃).

We will write below in the text Auc(X) for the subring of A(X) consisting of all
universally central elements and we set Āuc := Auc(pt).

Remark 2.16. Note, that if the theory A takes values in the category of Z/2-
graded Abelian groups and grade-preserving homomorphisms, and is moreover a
Z/2-graded-commutative ring theory, i.e. for any a ∈ Ap(P ) and b ∈ Aq(Q) one
has the relation a×b = (−1)pqb×a, then each even degree element is a universally
central element.

One should remark as well that in the graded commutative case the second
partial Leibnitz rule holds (if we assume that for every pair (X,U) the operator
∂X,U is a graded operator of degree +1). Namely, if a ∈ Ap(U) and b ∈ Aq(Y )

and U is open in a smooth X, then the relation ∂Y×X,Y×U(b×a) = (−1)qb×∂X,U (a)

in A(Y × X,Y × U).

If A is a ring cohomology theory, then for each pair (X,U) ∈ SmOp the local-
ization sequences from Section 2.2.3 are sequences of the A(X)-modules (partial
Leibnitz rule). By the same reason for each open covering X = U1 ∪ U2 the
Mayer–Vietoris sequence from Section 2.2.4 is a sequence of the A(X)-modules.
Thus the following two propositions hold.

PROPOSITION 2.17. Let f : (X,U) → (X′, U ′) be a morphism of pairs, let
α ∈ A(X) and let α|U = α|U ∈ A(U). Denote the composition operator (∪α ◦
f A: A(X′) → A(X)) (respectively (∪αU ◦ f A: A(U ′) → A(U)) and (∪α ◦
f A: A(X′, U ′) → A(X,U))) by ∪α (respectively ∪αU , and ∪α). Then these
operators form a morphism of the localization sequences for the pairs (X′, U ′)
and (X,U), that is the diagram commutes

A(X) −−−→ A(U)
∂X,U−−−→ A(X,U) −−−→ A(X) −−−→ A(U)

∪α
� ∪αU

� ∪α
� ∪α

� ∪αU
�

A(X′) −−−→ A(U ′)
∂X′,U ′−−−→ A(X′, U ′) −−−→ A(X′ −−−→ A(U ′)).

PROPOSITION 2.18. Let X = U1 ∪ U2 and let X′ = U ′
1 ∪ U ′

2 be open coverings.
Let f : X → X′ be a morphism such that f (Ui) ⊂ U ′

i for i = 1, 2. Let α ∈ A(X) be
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18 I. PANIN

an element, let αi = α|Ui
∈ A(Ui) and let α12 = α|U12 ∈ A(U12). Denote the com-

position operator (∪α ◦ f A: A(X′) → A(X)) (respectively (∪αi ◦ f A: A(U ′
i ) →

A(Ui)) and (∪α12 ◦ f A: A(U ′
12) → A(U12))) by ∪α (respectively ∪αi and ∪α12).

Then these operators form a morphism of the Mayer–Vietoris sequences corre-
sponding to the coverings X′ = U ′

1 ∪ U ′
2 and X = U1 ∪ U2, that is the diagram

commutes

A(U1) ⊕ A(U2) −−−−−→ A(U12)
∂−−−−−→ A(X) −−−−−→ A(U1) ⊕ A(U2) −−−−−→ A(U12)

(∪α1,∪α2)

� ∪α12

� ∪α
� (∪α1,∪α2)

� ∪α12

�

A(U ′
1) ⊕ A(U ′

2) −−−−−→ A(U ′
12)

∂−−−−−→ A(X′) −−−−−→ A(U ′
1) ⊕ A(U ′

2) −−−−−→ A(U ′
12)).

The definition of a ring cohomology theory is equivalent to the following more
technical but pretty useful one.

DEFINITION 2.19. A ring cohomology theory is a weak morphism

(A,µ, e): (SmOp,×, pt) → (Ab,⊗,Z)

of the monoidal categories together with a functor transformation ∂ such
that the pair (A, ∂) is a cohomology theory (Definition 2.1) and the boundary
operator ∂ satisfies the partial Leibnitz rule saying that ∂P×Y (µU,Y (a ⊗ b)) =
µP,Y (∂P (a) ⊗ b) ∈ A(X × Y,U × Y ).

(Under this variant of the notation the cross-product c × d ∈ A(P × Q) of
elements c ∈ A(P ) and d ∈ A(Q) is the element µP,Q(a ⊗ b) ∈ A(P × Q)).

One could replace in this form of the definition the monoidal category (Ab,

⊗,Z) by any other Abelian monoidal category (C,⊗C, 1C) reformulating the par-
tial Leibnitz rule as follows: for every pair P ∈ SmOp and a smooth variety Y the
relation holds

∂P×Y ◦ µU,Y ◦ (idU ⊗C idY ) = µP,Y ◦ (∂P ⊗C idA(Y )).

Once again we left such a replacement to a reader to avoid technicalities as
much as it is possible.

2.5. EXAMPLES

Consider following examples.

2.5.1. Etale Cohomology
Let A∗

Z(X) = ⊕+∞
q=−∞H ∗

Z(X,µ
⊗q
m ) be the etale cohomology theory, where m is

an integer prime to char(k). The cup-products are described in [17, Chapter V,
Section 1, 1.17].
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2.5.2. K-theory
Let A be the algebraic K-theory from Section 2.1.8. So A(X,U) = ⊕∞

n=0K−n

(XonZ), where Z = X − U . The idea of the definition of the products is given in
[30].

2.5.3. Motivic Cohomology
Let AZ(X) = ⊕∞

q=0 ⊕∞
p=−∞ H

p

M,Z
(X,Ztr(q)) be the motivic cohomology [28].

Under the notation of Section 2.1.9 AZ(X) coincides with ⊕∞
q=0A

Ztr(q)

Z (X). Take
∂ = ⊕∞

q=0∂
Ztr(q). The products are defined in [28, the text just below Lemma 3.3]

and are induced by the canonical pairings Ztr(r) ⊗tr Ztr(s) → Ztr(r + s). The
products are associative and graded commutative, the unit 1 of this product is the
element 1 ∈ H 0

M(pt,Ztr(0)) = Z [28].

2.5.4. Semi-topological Complex and Real K-theories [6]
If the ground field k is the field R of reals then the semi-topological K-theory of
real algebraic varieties KRsemi defined in [6] is a ring cohomology theory as it is
proved in [6].

2.5.5. Algebraic Cobordism Theory
To introduce a ring structure on the algebraic cobordism theory (Section 2.1.11) it
would be convenient to enrich MGL with a symmetric ring structure [13,
Section 4]. For that we construct another T -spectrum MGL which is a commuta-
tive symmetric ring spectrum by the very construction and which is weekly equiv-
alent to MGL as the T -spectrum. The desired T -spectra MGL is described in [23,
2.5.5]. A ring structure on the algebraic cobordism theory was introduced as well
in [10].

2.5.6. Singular Cohomology of the Real Point Sets
Let k = R and let A = Aev ⊕Aodd with Aev(X,U) = ⊕∞

0 Hp((X(R), U(R); Z/2)
and Aodd(X,U) = 0 (see Section 2.1.3). Take as a boundary ∂ the usual boundary
map for the pair (X(R), U(R)). Clearly ∂ is grade-preserving with respect to the
grading we choose on A. Now the cup product makes A a Z/2-graded-commutative
ring theory.

3. Orientations

In this section A is a ring cohomology theory. We introduce three following struc-
tures which A can be endowed with: an orientation, a Chern structure and a Thom
structure. We show that there is a natural one-to-one correspondence between these
structures (see Theorems 3.5, 3.35 and 3.36).
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3.1. ORIENTATIONS ON A RING COHOMOLOGY THEORY

Let us recall that for a vector bundle E over a variety X we identify X with z(X),
where z: X → E is the zero section.

DEFINITION 3.1. An orientation on the theory A is a rule assigning to each
smooth variety X, to each its closed subset Z and to each vector bundle E/X

an operator

thEZ : AZ(X) → AZ(E)

which is a two-sided A(X)-module isomorphism and satisfies the following
properties

1. invariance: for each vector bundle isomorphism ϕ: E → F the diagram
commutes

AZ(X)
thEZ−−−→ AZ(F)

id

�
�ϕA

AZ(X)
thEZ−−−→ AZ(E)

2. base change: for each morphism f : (X′, X′ − Z′) → (X,X − Z) with closed
subsets Z ↪→ X and Z′ ↪→ X′ and for each vector bundle E/X and for its pull-
back E′ over X′ and for the projection g: E′ = E ×X X′ → E the diagram
commutes

AZ(X)
thEZ−−−→ AZ(E)

fA

�
�gA

AZ′(X′)
thE

′
Z′−−−→ AZ′(E′)

3. for each vector bundles p: E → X and q: F → X the following diagram
commutes

AZ(X)
thEZ−−−→ AZ(E)

thFZ

�
�thp

∗(F)
Z

AZ(F )
thq

∗(E)
Z−−−→ AZ(E ⊕ F)

and both compositions coincide with the operator thE⊕F
Z .

The operators thE
Z are called Thom isomorphisms. The theory A is called ori-

entable if there exists an orientation of A. The theory A is called oriented if an
orientation is chosen and fixed.

Next we are going to describe a number of data which allow to orient A.
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3.2. CHERN AND THOM STRUCTURES ON A

In this section A is a ring cohomology theory. If X is a smooth variety we write 1X
for the trivial rank 1 bundle over X. Often we will just write 1 for 1X if it is clear
from a context what the variety X is.

DEFINITION 3.2. A Chern structure on A is an assignment L �→ c(L) which
associate to each smooth X and each line bundle L/X a universally central element
c(L) ∈ A(X) satisfying the following properties

1. functoriality:
c(L1) = c(L2) for isomorphic line bundles L1 and L2;
f A(c(L)) = c(f ∗(L)) for each morphism f : Y → X;

2. nondegeneracy: the operator (1, ξ ): A(X) ⊕ A(X) → A(X × P1) is an iso-
morphism where ξ = c(O(−1)) and O(−1) is the tautological line bundle on
P1;

3. vanishing: c(1X) = 0 ∈ A(X) for any smooth variety X.

The element c(L) ∈ A(X) is called Chern class of the line bundle L. (It will be
proved below in Lemma 3.29 that the elements c(L) are nilpotent).

Let E be a vector bundle over a smooth X and m ∈ AX(E) be an element. We
will say below in the text that m is A(X)-central, if for any element a ∈ A(X)

one has the relations m ∪ a = a ∪ m in AX(E) (we consider elements of A(X)

as elements of A(E) by means of the pull-back operator induced by the projection
E → X). We will say that m is universally A(X)-central if for any morphism
f : X′ → X and the vector bundle E′ = X′ ×X E and its projection F : E′ → E

the element FA(m) ∈ AX′(E′) is A(X′)-central.
Observe that for a universally A(X)-central element m ∈ AX(E) the element

zA(iA(m)) in A(X) is universally central in the sense of Definition 2.15 (here
iA: AX(E) → A(E) is the support extension operator and z: X → E is the
zero section of E).

DEFINITION 3.3. One says that A is endowed with a Thom structure if for each
smooth variety X and each line bundle L/X it is chosen and fixed a universally
A(X)-central element th(L) ∈ AX(L) satisfying the following properties

1. functoriality: ϕA(th(L2)) = th(L1) for each isomorphism ϕ: L1 → L2 of line
bundles;
f A
L (th(L)) = th(LY ) for each morphism f : Y → X and each line bundle L/X,

where LY = L ×X Y is the pull-back line bundle over Y and fL: LY → L is
the projection to L;

2. nondegeneracy: the cup-product ∪th(1): A(X) → AX(X×A1) is an isomorph-
ism (here X is identified with X × {0}).
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The element th(L) ∈ AX(L) is called the Thom class of the line bundle L. Now
we are going to describe a one-to-one correspondence between Chern and Thom
structures on A.

LEMMA 3.4. Assume A is endowed with a Chern structure L �→ c(L). Let L
be a line bundle over a smooth X and let E = 1 ⊕ L and let p: P(E) → X be
the projection. Identify the group AP(1)(P(E)) with a subgroup of A(P(E)) via the
support extension operator AP(1)(P(E)) → A(P(E)) from the sequence (8). Then
the element c(OE(1) ⊗ p∗L) ∈ A(P(E)) belongs to the subgroup AP(1)(P(E)) of
the group A(P(E)). Below we will often write t̄h(L) for c(OE(1) ⊗ p∗L).

Proof. The projection to the base X identifies the closed subvariety P(L) with
the variety X. The restriction of the line bundle OE(1) to P(L) is coincides with
L∨. Thus the restriction of OE(1) ⊗ p∗L to P(L) is the trivial bundle. Now if
iL: P(L) ↪→ P(E) is the inclusion from (8) then

iAL (c(OE(1) ⊗ p∗L)) = c(i∗L(OE(1) ⊗ p∗L)) = 0.

The exactness of the sequence (8) completes the proof.

Now we are ready to describe the mentioned one-to-one correspondence. As-
suming that A is endowed with a Thom structure L �→ th(L) endow A with a
Chern structure as follows. For a line bundle L over a smooth X set

c(L) = [zA ◦ iA](th(L)) ∈ A(X), (10)

where iA: AX(L) → A(L) is the support extension operator (see Definition 2.1)
and zA: A(L) → A(X) is the operator induced by the zero section z: X → L.

Assuming that A is endowed with a Chern structure L �→ c(L) endow A with
a Thom structure as follows. For a line bundle L over a smooth X consider the
vector bundle E = 1 ⊕ L, the projection p: P(E) → X, the natural inclusion
e: L ↪→ P(E) and the pull-back eA: AP(1)(P(E)) → AX(L). The element t̄h(L) =
c(OE(1) ⊗ p∗L) ∈ A(P(E)) belongs to the subgroup AP(1)(P(E)) by lemma
above. Now set

th(L) = eA(c(OE(1) ⊗ p∗L)) ∈ A(L,L0) = AX(L). (11)

THEOREM 3.5. For any ring cohomology theory A the following assertions hold.

1. If A is endowed with a Thom structure L �→ th(L) then the assignment
L �→ c(L) given by (10) endows A with a Chern structure.

2. If A is endowed with a Chern structure L �→ c(L) then the assignment
L �→ th(L) given by (11) endows A with a Thom structure.

3. The constructions described in the items 2 and in 1 are inverse of each other:
namely if L �→ c(L) is a Chern structure on A and L �→ th(L) is a Thom
structure on A, then the relation (10) holds for all line bundles if and only if
the relation (11) holds for all line bundle.
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Let L �→ c(L) be a Chern structure on A and let L �→ th(L) be a Thom structure
on A. In the case when (11) holds for all line bundles (or (10) holds for all line
bundles which is the same) we say that the Chern structure and the Thom structure
on A correspond to each other.

The item 1 describes the arrow γ from Section 1. The item 2 describes a unique
arrow inverse to the arrow γ .

Proof. We start with the following lemma.

LEMMA 3.6. Let L �→ c(L) be a Chern structure on A. Let O(−1) be the tauto-
logical line bundle on the projective line P1 and let O(1) be the dual bundle and let
ξ = c(O(−1)), and ζ = O(1). Then ξ 2 = 0 = ζ 2 and c(O(1)) = −c(O(−1)).

Proof of lemma. Since O(−1)|{0} is the trivial bundle one has ξ |{0} = 0. Thus
ξ ∈ A{0}(P1) and ξ ∈ A{∞}(P1). Therefore the element ξ 2 ∈ A(P1) is in the image
of A{0}∩{∞}(P1) = A∅(P1). This last group vanishes by the property Section 2.2.1
and thus ξ 2 = 0. Similarly ζ 2 = 0.

The A(pt)-module A(P1 × P1) is a free module with the free bases 1, ξ ⊗ 1,
1 ⊗ ξ and ξ ⊗ ξ by the property of the Chern classes. Consider an element α =
c(p∗

1(O(−1)⊗p∗
2(O(1)))). Write it in the form α = a001 ⊗ 1 + a10ξ ⊗ 1 + a011 ⊗

ξ+a11ξ⊗ξ , where aij are elements in A(pt). Restricting the element α to {0}×{0},
to P1 × {0} and to the diagonal ?(P1) one gets the following relations: a00 = 0,
a00 + a10ξ = ξ in A(P1) and a00 + (a10 + a01)ξ = 0 in A(P1). Thus a10 = 1
and a10 + a01 = 0. Therefore a01 = −a10 = −1. The chain of the relations
ζ = α{0}×P1 = a00 + a01ξ = −ξ completes the proof of lemma.

Now we are ready to prove the assertion (2) of theorem. The functoriality of
the assignment L �→ th(L) is obvious. Now to prove that the element th(L) is
universally A(X)-central it suffices to prove that the element th(L) is A(X)-central.
Consider the element t̄h(L) = c(OE(1) ⊗ p∗L)) ∈ AP(1)(P(E)). This element is
A(P(E))-central because it is the Chern class. Since th(L) = eA(t̄h(L)) and the
pull-back map A(P(E)) → A(L) is surjective the element th(L) is A(X)-central.

It remains to prove the non-degeneracy property of the element th(1). For that
consider the commutative diagram with exact rows

0 �� AX×{0}(X × P1) �� A(X × P1) �� A(X × A1) �� 0

0 �� A(X) ��

∪t̄h(1)

��

A(X) ⊕ A(X) ��

(∪t̄h(1),∪1)

��

A(X) ��

prA

��

0.

The non-degeneracy property of the Chern class and the relation t̄h(1) =
−c(O(−1)) = −ξ show that the middle vertical arrow is an isomorphism. The right
vertical arrow is an isomorphism by the homotopy invariance property. Therefore
the left vertical arrow is an isomorphism as well.
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Now consider the commutative diagram

A(X)
∪t̄h(1) ��

id

��

AX×{0}(X × P1)

eA

��
A(X)

∪th(1) �� AX×{0}(X × A1).

The map eA is an isomorphism by the excision property. Therefore the bottom
arrow is an isomorphism as well. The non-degeneracy property of the class th(1)
is proved.

To prove the assertion (1) of theorem we need in some preliminaries.

NOTATION 3.7. Let M be a line bundle over a smooth variety X and let eA:
AP(1)(P(1 ⊕ M)) → AX(M) be the excision isomorphism induced by the open
inclusion e: M ↪→ P(1 ⊕ M). For an element α ∈ AX(M) set

ᾱ = (eA)−1(α) ∈ AP(1)(P(1 ⊕ M)).

Since the support extension map AP(1)(P(1 ⊕M)) → A(P(1 ⊕M)) is injective (8)
we will often write ᾱ for the image of this element in A(P(1 ⊕ M)). If α = th(M)

is the Thom class of M then we will often write t̄h(M) for the element ᾱ.

The following two observations will be useful for the proof as well

• if ϕ: X1 → X is a morphism of smooth varieties and M1 = ϕ∗(M) is the line
bundle over X1 and C: PX1(1⊕M1) → PX(1⊕M) = P(1⊕M) is the induced
morphism of the projective bundles then for α1 = ϕA(α) one has the relation
ᾱ1 = CA(ᾱ).

• if s: X → P(1 ⊕ M) is the section identifying X with P(1) then one has
sA(ᾱ) = zA(iA(α)), where z is the zero section of M and iA: AX(M) → A(M)

is the support extension operator.

Now under Notation 3.7 one has the following lemma.

LEMMA 3.8. Let an assignment L �→ th(L) be the Thom structure on A. Let
L �→ c(L) be the assignment given by the formula (10). Then for the line bundle
O(1) on P1 one has the relation t̄h(1) = c(O(1)) in A(P1).

Proof of lemma. Let ∞ ∈ P2 be a rational point and let σ : P′ → P2 be the blow-
up of the projective plane P2 at the point ∞. The linear projection P2 − ∞ → P1

extends canonically to a morphism p: P′ → P1. Using this morphism the variety
P′ is naturally identified with the projective bundle P(1 ⊕ L) over the projective
line P1, where L = O(1). Under this identification the preimage σ−1(∞) of the
point ∞ coincides with the subvariety P(L) of the projective bundle P(1 ⊕ L).
The subvariety P(1) ⊂ P(1 ⊕ L) is the image of a section s1: P1 → P(1 ⊕ L) of
the projection p. The image of P1 under the composite map σ ◦ s1 is a projective
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line l in P2 which avoids the point ∞. Let x ∈ P1 be a rational point and let
j : P1 = p−1(x) ↪→ P(1 ⊕ L) be the imbedding of the fiber into the total space.
One can summarize these data in the following diagram

P1 σ ��

sL

��

pt

i∞
��

P1
j ��

p0

��

P(1 ⊕ L)
σ ��

p

��

P2

pt
i �� P1

σ◦s1

���������������
.

Now set α = th(L) ∈ AX(L), then ᾱ = t̄h(L) ∈ AP(1)(P(1 ⊕ L)). In the
commutative diagram of the pull-backs

Al(P2)
σA=u−−−→ AP(1)(P(1 ⊕ L))

w

�
�v

Al(P2 − ∞)
t−−−→ AP(1)(P(1 ⊕ L) − P(L)),

the maps w, t and v are isomorphisms. In fact, w and v are isomorphisms by the
excision property and t is isomorphism because the map σ identifies P(1 ⊕ L) −
P(L) with P2 − ∞. Therefore the fourth arrow u = σA is an isomorphism as well.

Therefore there exists an element β ∈ Al(P2) such that σA(β) = ᾱ. The
mappings σ ◦ j, σ ◦ s1: P1 → P2 are two linear imbeddings of the project-
ive line into P2. Therefore by the property (Section 2.10) one has the relation
(σ ◦ j)A(β) = (σ ◦ s1)

A(β) in A(P1). Thus one gets the chain of relations in
A(P1)

jA(ᾱ) = (σ ◦ j)A(β) = (σ ◦ s1)
A(β) = sA1 (ᾱ).

By the two observations mentioned just below Notation 3.7 one gets the relations
jA(ᾱ) = t̄h(1) and sA1 (ᾱ) = c(L) = c(O(1)). Thus t̄h(1) = c(O(1)) and lemma is
proved.

Now we are ready to prove assertion (1) of theorem. The functoriality of the
class L �→ c(L) given by the formula (10) is obvious. To prove that for the trivial
line bundle 1 over a smooth variety X one has c(1) = 0 consider a section s: X →
X × A1 of the trivial bundle 1 which takes a point x ∈ X to the point (x, 1). If z is
the zero section of the same bundle then the pull-back mappings zA and sA coin-
cides. In fact both are the inverse to the pull-back map pA: A(X) → A(X × A1)

induced by the projection p: X× A1 → X. If iA: AX×0(X× A1) → A(X× A1) is
the support extension map, then c(1) = (zA ◦ iA)(1) = (sA ◦ iA)(1) and it remains
to show that sA ◦ iA = 0.
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For that consider a commutative diagram

AX×{0}(X × A1)
iA−−−→ A(X × A1)

jA

�
�sA

A∅(X × (A1 − {0})) −−−→ A(X),

where the pull-back map jA is induced by the inclusion j : X × (A1 − {0}) ↪→
X × A1 and the bottom horizontal arrow is the pull-back induced by the inclusion
s: (X,∅) → (X × (A1 − {0}),X × (A1 − {0})). The group A∅(X × (A1 − {0})
vanishes by the vanishing property (Section 2.2.1). Thus sA ◦ iA = 0 which proves
the relation c(1) = 0.

It remains to prove the non-degeneracy property of the class L �→ c(L). For
that consider the assignment L �→ c′(L) = c(L∨). Clearly the class c′ is functorial
and satisfies the vanishing property. Moreover the map (1, c′(O(−1))): A(X) ⊕
A(X) → A(X × P1) is an isomorphism by the non-degeneracy property of the
Thom class L �→ th(L) and the very last lemma. Thus the assignment L �→ c′(L)
is a Chern structure. Now the previous lemma shows that c′(O(−1)) = −c′(O(1)).
Thus c(O(1))= −c(O(−1)) and therefore the map (1,c(O(−1))):A(X)⊕A(X) →
A(X × P1) is an isomorphism as well. The non-degeneracy property of the class
L �→ c(L) is proved and hence the assertion (1) of theorem is proved as well.

The third assertion of the theorem is proved just after Section 3.3 because the
proof of the third assertion presented in this text uses Theorem 3.9.

3.3. PROJECTIVE BUNDLE THEOREM

We are going to construct higher Chern classes for a ring cohomology theory A

endowed with a Chern structure L �→ c(L). Following the known Grothendieck’s
method one has to compute cohomology of a projective bundle.

THEOREM 3.9 (Projective bundle cohomology). Let A be a ring cohomology
theory endowed with a Chern structure L �→ c(L) on A. Let X be a smooth variety
and let E/X be a vector bundle with rkE = n. For ξE = c(OE(−1)) ∈ A(P(E))

we have an isomorphism

(1, ξE, . . . , ξ
n−1
E ): A(X) ⊕ A(X) · · · ⊕ A(X) → A(P(E)),

where (and elsewhere) we denote the operator of ∪-product with a universally
central element by the symbol of the element.

Moreover, for trivial E we have ξnE = 0. In addition, all the assertions hold if
the element ζE = c(OE(1)) ∈ A(P(E)) is used instead of ξE .

Proof. This variant of the proof is based on an oral exposition of Suslin. Let
{0} = [1 : 0 : · · · : 0] ∈ Pn be a point and let An be an affine subspace in Pn

defined by the inequality x0 != 0. Let Pn
i be a hypersurface in Pn defined by xi = 0
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and let An
i = Pn

i ∩ An. Let pi : An → A1 be the projection on the ith axis and let
ji : A1 ↪→ An be the ith axis. Finally let j̄i : P1 ↪→ Pn be the closed imbedding
extending the imbedding ji .

Let resi : APn
i
(Pn) → AAn

i
(An) be the pull-back map induced by the imbedding

An ↪→ Pn. Let res: A{0}(An) → A{0}(Pn) be the pull-back map induced by the
same imbedding.

The element ξ = c(O(−1)) ∈ A(P1) vanishes being restricted to P1 −{0}. Thus
the element t̄ = ξ belongs to the subgroup A{0}(P1) of the group A(P1). Set

t = jA(t̄) ∈ A{0}(A1),

where jA is the pull-back map A{0}(P1) → A{0}(A1). Set

th(n) = pA
1 (t) ∪ pA

2 (t) ∪ · · · ∪ pA
1 (t) ∈ A{0}(An).

Let ei : (Pn,∅) ↪→ (Pn,Pn − Pn
i ) and let e: (Pn,∅) ↪→ (Pn,Pn − ∅) be the inclu-

sions. The pull-back operators eAi : APn
i
(Pn) → A(Pn) and eA: A{0}(Pn) → A(Pn)

are just the support extension operators.

LEMMA 3.10. Let Y be a smooth variety and let Z ⊂ Y be a closed subset. Let
pr: Y × A1 → A1 and p: Y × A1 → Y be the projections. Then the composition
operator

(∪ prA(t)) ◦ pA: AZ(Y ) → AZ×{0}(Y × A1)

is an isomorphism.

LEMMA 3.11. The map ∪ th(n): A(pt) → A{0}(An) is an isomorphism.

LEMMA 3.12. Let ξn = c(O(−1)) ∈ A(Pn) and ζn = c(O(1)) ∈ A(Pn). Then
ξn+1
n = 0 and ζ n+1

n = 0.

LEMMA 3.13. The support extension map APn
i
(Pn) → A(Pn) is injective, the

element ξn = c(O(−1)) coincides with eAi (t̄i ) for an appropriative element t̄i ∈
APn

i
(Pn) and the relation resi(t̄i ) = pA

i (t) holds in AAn
i
(An).

LEMMA 3.14. The element ξn ∈ A(Pn) coincides with eA(t̄h(n)) for an appropri-
ative element t̄h(n) ∈ A{0}(Pn).

If the support extension operator eA: A{0}(Pn) → A(Pn) is injective, then the
relation th(n) = res(t̄h(n)) holds in A{0}(An).

Remark 3.15. The linear projection Pn −{0} → Pn
0 → Pn −{0} makes Pn −{0}

a line bundle over Pn
0 and the subvariety Pn

0 is the zero section of this line bundle.
By the homotopy invariance property the pull-back operator A(Pn−{0}) → A(Pn

0)

is an isomorphism.
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Given these five lemmas complete the proof of theorem as follows. The general
case is reduced to the case of the trivial vector bundle E via the Mayer–Vietoris
arguments using Proposition 2.18. If E = 1k+1 then P(E) = X×Pk. To use shorter
notation we prove the theorem only for the case of the projective space Pk itself.
We proceed the proof by the induction on the integer k. If k = 1, then the theorem
holds by the very definition of the Chern structure on A. We will assume below
that theorem holds for all integers k < n and prove theorem for k = n. Consider
the localization sequence for the pair (Pn,Pn − {0})

· · · → A{0}(Pn)
α−→ A(Pn)

β−→ A(Pn − {0}) → · · ·.
If ξi ∈ A(Pi) is the Chern class of the line bundle O(−1) on Pi , then ξn|Pn−1 = ξn−1

and ξ
j
n |Pn−1 = ξ

j

n−1. By the inductive assumption the elements 1, ξn−1, . . . , ξ
n−1
n−1

form a free base of the A(pt)-module A(Pn−1). Therefore the map A(Pn) →
A(Pn

0) is a split surjection.
By Remark 3.15 the pull-back operator A(Pn − {0}) → A(Pn

0) is an isomorph-
ism. Thus the pull-back operator A(Pn) → A(Pn−{0}) is a split surjection as well.
Now the localization sequence for the pair (Pn,Pn − {0}) shows that the support
extension map A{0}(Pn) → A(Pn) is an injection. Therefore one gets a short exact
sequence

0 → A{0}(Pn)
α−→ A(Pn)

β ′−→ A(Pn
0) → 0,

where β ′ is the pull-back map. One more consequence of the injectivity of the
support extension operator A{0}(Pn) → A(Pn) is the relation

pA
1 (t) ∪ pA

2 (t) ∪ · · · ∪ pA
1 (t) = res(t̄hn)

in A{0}(An) which now holds by Lemma 3.14. An A(pt)-linear map s: A(Pn
0) →

A(Pn) taking the element ξ jn−1 to ξ
j
n (j = 0, 1, . . . , n − 1) splits the surjection β ′.

The element ξnn ∈ A(Pn) belongs to the subgroup A{0}(Pn) because ξnn−1 = 0 in
A(Pn−1) by Lemma 3.12. It remains to show that the map ∪ξn: A(pt) → A{0}(Pn)

is an isomorphism.
For that consider the diagram

A(pt)
∪t̄h(n) ��

id
��

A{0}(Pn)

res
��

A(pt)
∪th(n) �� A{0}(An).

It commutes by Lemma 3.14. The operator res is an isomorphism by the excision
property. The operator ∪th(n) is an isomorphism by Lemma 3.11. Thus the op-
erator ∪t̄h(n) is an isomorphism as well. To prove theorem it remains to prove
Lemmas 3.10–3.14.
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Remark 3.16. In certain texts proofs of the projective bundle theorem for some
specific cohomology theories contain the following gap. It is verified that there is
an isomorphism A(pt) ∼= A{0}(Pn), and it is missed to check that specifically the
operator ∪ξn: A(pt) → A{0}(Pn) is an isomorphism.

Proof of Lemma 3.10. Let p̄r: Y × P1 → P1 and p̄: Y × P1 → Y be the
projections. We will write for short ∪t for the operator (∪prA(t)) ◦ pA and will
write in this proof ∪ξ for the operator ∪p̄rA(ξ) ◦ p̄a: AZ(Y ) → AZ×P1(Y × P1)

and write ∪1 for the operator p̄A: AZ(Y ) → AZ×P1(Y × P1). We begin with
verifying that the operator

(∪1,∪ξ): AZ(Y ) ⊕ AZ(Y ) → AZ×P1(Y × P1) (12)

is an isomorphism. In fact, by Proposition 2.17 the diagram commutes (here U =
Y−Z)

A(Y × P1) −−−−−→ A(U × P1)
∂−−−−−→ AZ×P1(Y × P1) −−−−−→ A(Y × P1)

(∪1,∪ξ)
� (∪1,∪ξ)

� (∪1,∪ξ)
� (∪1,∪ξ)

�

A(Y) ⊕ A(Y) −−−−−→ A(U) ⊕ A(U)
∂⊕∂−−−−−→ AZ(Y ) ⊕ AZ(Y ) −−−−−→ A(Y) ⊕ A(Y).

Since ξ = c(O(−1)) ∈ A(P1) the five-lemma proves that the operator (12) is an
isomorphism.

The next step is to check that the operator

∪ξ : AZ(Y ) → AZ×{0}(Y × P1) (13)

is an isomorphism. For that consider the localization sequence

· · · → AZ×{0}(Y × P1)
α−→ AZ×P1(Y × P1)

β−→ AZ×A1(Y × P1 −
− Z × {0}) −→ · · ·

for the triple (Y ×P1, Y ×P1−Z×{0}, Y×P1−Z×P1). We claim that the operator
β is always surjective (and thus the operator α is always injective and therefore the
localization sequence splits in short exact sequences).

In fact, if i: Y × A1 ↪→ Y × P1 −Z× {0} is the open inclusion and q: Y × P1 −
Z × {0} is the projection then q ◦ i = p: Y × A1 → Y and thus iA ◦ qA = pA.
The pull-back operator iA: AZ×A1(Y × P1 − Z × {0}) → AZ×A1(Y × A1) is an
isomorphism by the excision property and the pull-back operator pA: AZ(Y ) →
AZ×A1(Y × A1) is an isomorphism by the strong homotopy invariance property.
Thus qA: AZ(Y ) → AZ×A1(Y × P1 −Z × {0}) is an isomorphism. This proves the
surjectivity of β and the injectivity of α.

We are ready to verify that the operator (13) is an isomorphism. For that con-
sider the diagram

0 �� AZ×{0}(Y × P1)
α �� A

Z×P1 (Y × P1)
β �� A

Z×A1 (Y × P1 − Z × {0}) �� 0

0 �� AZ(Y)
in ��

∪ξ
��

AZ(Y) ⊕ AZ(Y)
pr ��

(∪ξ,∪1)

��

AZ(Y)
��

qA

��

0,
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where the operator in is the inclusion to the first summand and the operator pr
is the projection on the second summand. The diagram commutes because the
cup-product is functorial. The sequence on the top is short exact and the map
qA is an isomorphism as was just checked above. The operator (∪ξ,∪1) is an
isomorphism as was checked as well above in this proof. Thus the operator (13) is
an isomorphism as well.

The proof of the lemma is completed as follows. Consider the diagram

AZ(Y )
∪ξ ��

id

��

AZ×{0}(Y × P1)

γ

��
AZ(Y )

∪t �� AZ×{0}(Y × A1),

where γ is the pull-back operator induced by the inclusion Y × A1 ↪→ Y × P1.
The operator γ is an isomorphism by the excision property. Since the operator is
an isomorphism the operator ∪t is an isomorphism as well. Lemma 3.10 is proved.

Proof of Lemma 3.11. For every integer i let pi,i : Ai → A1 be the projection of
the affine space Ai to its last coordinate. Using the induction by n it straightforward
to check that the cup-product operator ∪th(n): A(pt) → A{0}(An) coincides with
the composition operator

A(pt)
∪t−→ A{0}(A1)

∪pA
2,2(t)−−−−→ · · · ∪pA

n,n(t)−−−−→ A{0}(An).

Each arrow in this sequence of arrows is an isomorphism by Lemma 3.10. The
lemma follows.

Proof of Lemma 3.12. For every integer i = 0, 1, . . . , n one has ξn|Pn−Pn
i

=
0 because the Chern class of a trivial line bundle vanishes. Thus ξn belongs to
the image of the support extension operator eAi : APn

i
(Pn) → A(Pn), say ξn =

eAi (t̄i ) for appropriative element t̄i ∈ APn
i
(Pn). Now the element ξn+1

n coincides
with the image of the cup-product t̄0 ∪ t̄1 ∪· · ·∪ t̄n under the support extension map
APn

0∩···∩Pn
n
(Pn) → A(Pn). The group APn

0∩···∩Pn
n
(Pn) vanishes because ∩n

0Pn
i = ∅.

Thus ξn+1
n = 0. Similarly one gets the relation ζ n+1

n = 0. The lemma is proved.
Proof of Lemma 3.13. The localization sequence for the pair (Pn,Pn − Pn

i ) cuts
into short exact sequences

0 → APn
n
(Pn) → A(Pn) → A(Pn − Pn

i ) → 0

because the composite map A(pt)
pA−→ A(Pn) → A(Pn − Pn

i ) is an isomorphism.
This proves the first assertion of the lemma.

The fact that ξn = eAi (t̄i ) for the element t̄i ∈ APn
i
(Pn

i ) is proved in the proof of
Lemma 3.12.
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To prove the relation resi(t̄i ) = pA
i (t) consider the commutative diagram

A(Pn)
j̄Ai �� A(P1)

APn
i
(Pn)

j̄Ai ��

resi
��

eAi

��

A{0}(P1)

jA

��

iA

��

AAn
i
(An)

jAi �� A{0}(A1),

where the maps eAi and iA are the support extension operators. The relation
j̄ Ai (ξn) = ξ in A(P1) and the injectivity of the map iA prove the relation j̄ Ai (t̄i ) = t̄

in the group A{0}(P1). Since t = jA(t̄) in A{0}(A1) hence one gets the relation
jAi (resi(t̄i )) = t in A{0}(A1). The pull-back homomorphisms jAi : AAn

i
(An) →

A{0}(A1) and pA
i : A{0}(A1) → AAn

i
(An) are inverse to each other isomorphisms by

the homotopy invariance property. This proves the desired relation resi (t̄i) = pA
i (t)

in AAn
i
(An).

Proof of Lemma 3.14. Lemma 3.12 (applied to Pn−1) shows that the element
ξnn |Pn

0
vanishes. By Remark 3.15 the pull-back operator A(Pn − {0}) → A(Pn

0)

is an isomorphism. Thus the element ξnn |Pn−{0} vanishes as well. Therefore ξnn =
eA(t̄h(n)) for an appropriative element t̄h(n) ∈ A{0}(Pn). This proves the first asser-
tion of the lemma.

To prove the last assertion of the lemma consider the commutative diagram
∏n

i=1 A(P
n)

∪ �� A(Pn)

∏n
i=1 APn

i
(Pn)

∪ ��

∏
resi

��

∏
eAi

��

A{0}(Pn)

res

��

eA

��

∏n
i=1 AAn

i
(An)

∪ �� A{0}(An),

where the maps eAi and eA are the support extension maps and the horizontal arrows
are the cup-products. The commutativity of the upper square of this diagram and
the injectivity of the map eA prove the relation t̄1 ∪ t̄2 ∪ · · · ∪ t̄n = t̄h(n) in the
group A{0}(Pn). Now the commutativity of the bottom square and the relations
resi(t̄i ) = pA

i (t) prove the desired relation pA
1 (t)∪pA

2 (t)∪· · · ∪pA
n (t) = res(t̄h(n))

in the group A{0}(An).

Now Lemmas 3.10–3.14 are proved. The proof of Theorem 3.9 is
completed.
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COROLLARY 3.17 (Projective bundle cohomology with supports). Under the
hypotheses of Theorem 3.9 the map

(1, ξE, . . . , ξ
n−1
E ) : AZ(X) ⊕ AZ(X) · · · ⊕ AZ(X) → AP(EZ)(P(E))

is an isomorphism where EZ = E|Z is the restriction of the vector bundle E to Z.

The short exact sequence (14) written-down below is useful as well. Namely,
let X be a smooth variety and let M and N be two vector bundles over X. Let
īM : P(M) ↪→ P(M ⊕ N) and īN : P(N) ↪→ P(M ⊕ N) be the closed imbeddings
induced by the direct summands M and N , respectively. Let p: P(M⊕N) → X be
the projection. Let jAM : AP(M)(P(M ⊕N)) → A(P(M ⊕N)) be the support exten-
sion operator and let īAN : A(P(M ⊕ N)) → A(P(N)) be the pull-back operator.

COROLLARY 3.18. With these notation under the hypotheses of Theorem 3.9 the
sequence

0 → AP(M)(P(M ⊕ N))
jAM−→ A(P(M ⊕ N))

īAE−→ A(P(N)) → 0 (14)

is short exact.

To prove this consider U = P(M ⊕ N) − P(M) with the open inclusion
j : U ↪→ P(M ⊕N) and observe that U becomes a vector bundle over X by means
of the linear projection q: U → P(N). The obvious inclusion iN : P(N) ↪→ U is
just the zero section of this vector bundle, īN = j ◦ iN and the pull-back operator
iAN : A(U) → A(P(N)) is an isomorphism (the inverse to the one qA).

Now consider the pair (P(M ⊕ N),U). By the localization property (Defini-
tion 2.1) the following sequence

· · · → AP(M)(P(M ⊕ N))
jAM−→ A(P(M ⊕ N))

jA−→ A(U) → · · ·
is exact. We claim that this sequence splits in short exact sequences with the
surjective jA and the injective jAM . To prove this claim observe that one has the
relation

ξN = īAN(ξM⊕N)

which holds because the restriction of the line bundle OM⊕N(−1) to P(N) is
ON(−1). Thus ξN ∈ īAN(A(P(M ⊕ N))) and by the projective bundle theorem
(Theorem 3.9) the operator īAN : A(P(M ⊕ N)) → A(P(N)) is surjective. The
operator iAN is an isomorphism, īN = j ◦ iN and thus jA: A(P(M ⊕ N)) → A(U)

is surjective and the support extension operator jAM is injective. Now the sequence
(14) is short exact because the operator iAN is an isomorphism and īN = j ◦ iN . The
corollary is proved.

The last corollary and Lemma 2.4 prove the following corollary.
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COROLLARY 3.19. Under the hypotheses of Theorem 3.9 and the notation of
Lemma 2.4 let V ′

t = X′
t − it (Y × A1) and let jt : V ′

t ↪→ X′
t be the open inclusion.

Then

Ker(jA0 ) ∩ Ker(jAt ) = (0).

In the other words the operator (jA0 , j
A
t ): A(X′

t ) → A(P(1 ⊕ N)) ⊕ A(V ′
t ) is a

monomorphism.

3.4. END OF THE PROOF OF THEOREM 3.5

The third assertion of Theorem 3.5 is proved in this section.
Assume we are given with a Chern structure L �→ c(L) on A and let L �→ th(L)

be the Thom structure given by (11). We will now check that for each line bundle
L over a smooth variety X one has zA(iA(th(L))) = c(L). For that consider the
commutative diagram

AP(1)(P(1 ⊕ L))

eA

��

īA �� A(P(1 ⊕ L))

eA

��
AX(L)

iA �� A(L)

zA

��
A(X)

The chain of relations (here z̄ = e ◦ z)

zA(iA(th(L))) = zA(eA(c(O(1) ⊗ p∗(L)))) = c(z̄∗(O(1) ⊗ L)) = c(L)

proves the desired relation.
In the rest of the proof Notation 3.7 are used. Now suppose we are given with

a Thom structure L �→ th(L) on A and let L �→ c(L) be the Chern structure on
A given by the formula (10). For a line bundle L over a smooth X consider the
vector bundle E = 1 ⊕ L, the projection p: P(E) → X, the natural inclusion
e: L ↪→ P(E) and the pull-back eA: AP(1)(P(E)) → AX(L). We have to check
the relation (11). Since the operator eA is an isomorphism it suffices to check the
relation in A(P(1 ⊕ L))

t̄h(L) = c(O(1) ⊗ q∗(L)) (15)

To do this we need in some preliminary lemmas.

LEMMA 3.20. The elements t̄h(L) and c(OE(1)⊗p∗(L)) are central in A(P(E)).
Moreover both elements belongs to the ideal AP(1)(P(E)).

Proof. Let j : P(E) − P(1) ↪→ P(E) be the inclusion. The restriction of the
projection p: P(E) → X to P(E)−P(1)makes the last variety in a line bundle over
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X. The inclusion sL: X ↪→ P(E) − P(1) identifying X with the subvariety P(L)
in P(E) is the zero section of the mentioned line bundle. By the strong homotopy
property of the pretheory A the pull-back operator sAL : A(P(E) − P(1)) → A(X)

is an isomorphism. The line bundle s∗
L(OE(1) ⊗ p∗(L)) coincides with the line

bundle L∨ ⊗ L and therefore it is the trivial line bundle. Thus the Chern class
c(s∗

L(OE(1)⊗p∗(L)) vanishes and the element sAL (c(OE(1)⊗p∗(L))) vanishes as
well. Therefore jA(c(OE(1) ⊗ p∗(L))) = 0 in A(P(E) − P(1)), which proves the
inclusion c(OE(1) ⊗ p∗(L)) ∈ AP(1)(P(E)).

The class t̄h(L) is in the subgroup AP(1)(P(E)) by the very definition of the
class t̄h(L).

The element c(OE(1) ⊗ p∗(L)) is central in A(P(E)) because it is a Chern
class. To prove that the element t̄h(L) is central recall that for every smooth variety
X and every line bundle L over X the element th(L) ∈ AX(L) is A(X)-central.
Now for every element a ∈ A(P(E)) one has a chain of relations in AX(L)

eA(t̄h(L) ∪ a) = th(L) ∪ eA(a) = eA(a) ∪ th(L) = eA(a ∪ t̄h(L)).

Since the support extension operator eA: AP(1)(P(E)) → AX(L) is an isomorphism
one gets the relation t̄h(L) ∪ a = a ∪ t̄h(L) in AP(1)(P(E)). Thus the element
t̄h(L) ∈ A(P(E)) is central. The lemma is proved.

LEMMA 3.21. The operator (∪ t̄h(L)): A(X) → AP(1)(P(E)) is an isomorphism.
Proof. Consider the following commutative diagram

A(X)
∪ t̄h(L)−−−→ AP(1)(P(E))

id

�
�eA

A(X)
∪ th(L)−−−→ AX(L).

The operator eA is an isomorphism by the excision property. The operator ∪ th(L)
is an isomorphism because th(L) is the Thom class. The lemma follows.

LEMMA 3.22. The diagram commutes

AP(1)(P(E))
sA−−−→ A(X)

∪ t̄h(L)

�
�∪c(L)

A(X)
id−−−→ A(X),

and sA(t̄h(L)) = sA(c(OE(1) ⊗ p∗(L))).
Proof. Clearly zA ◦ eA = sA: AP(1)(P(E)) → A(X), where z: X → L is the

zero section of L. Thus sA(t̄h(L)) = zA(th(L)) = c(L) by the very definition
of c(L). The commutativity of the diagram is checked. It remains to check that
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c(L) = sA(c(OE(1)⊗ p∗(L))). This is obvious because the line bundle s∗(OE(1))
is trivial and the line bundle s∗(p∗(L)) coincides with the line bundle L.

CLAIM 3.23. For any variety X and any line bundle L over X there exists a finite-
dimensional vector space V and a diagram of the form

X
p←− X′ f−→ P(V ) (16)

in which X′ is a torsor under a vector bundle over X and the morphism f is such
that the line bundles p∗(L) and f ∗(OV (−1)) are isomorphic.

Proof of the claim. To construct the diagram (16) recall that by the Jouanalou
trick [14] there is a torsor X′/X under a vector bundle over X such that X′ is an
affine variety. Now take the projection p: X′ → X and consider the pull-back
p∗(L) of the line bundle L. Since the variety X′ is affine the line bundle p∗(L) can
be induced from a projective space via a morphism f : X → P(V ). The claim is
proved.

Proof of the relation (15). Take X = P∞ and L = OP∞(1) and consider
the commutative diagram from the last lemma. By the projective bundle theorem
(Theorem 3.9) the ring A(pt)[[t]] of formal power series in one variable is iden-
tified with the ring A(P∞) identifying the variable t with the Chern class c(L).
Thus the operator ∪c(L): A(X) → A(X) is injective. The operator ∪ t̄h(L) is an
isomorphism by Lemma 3.21. Hence the operator sA: AP(1)(P(E)) → A(X) is
injective. Now the relation c(OE(1) ⊗ p∗(L)) = t̄h(L) in A(X) holds by the last
lemma. The relation (15) is proved in the considered case. Clearly this implies the
relation (15) in the case X = P(V ) and L = OV (1) for any finite-dimensional
k-vector space V . The general case of the relation (15) will be reduced now to this
particular case.

Let X be a variety and let L be a line bundle over X. By Claim 3.23 there exists
a diagram of the form (16) such that the pull-back operator pA: A(X) → A(X′) is
an isomorphism and the line bundles L′ = p∗(L) and f ∗(OV (1)) are isomorphic.

Set E′ = 1⊕L′ and EV = 1⊕OV (1) and let p′: P(E′) → X′ and pV : P(EV ) →
P(V ) be the projections. A choice of a line bundle isomorphism L′ → f ∗(OV (1))
gives rise to the following Cartesian diagram

P(E)
P←−−− P(E′) F−−−→ P(EV )

p

� p′
�

�pV

X
p←−−− X′ f−−−→ P(V ).

Clearly one has relations

c(OE′(1) ⊗ (p′)∗(L′)) = FA(c(OEV
(1) ⊗ (pV )

∗(LV ))),

and

c(OE′(1) ⊗ (p′)∗(L′)) = PA(c(OE(1) ⊗ p∗(L))).
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As we already know c(OEV
(1)⊗ (pV )

∗(LV )) = t̄h(OV (1)) in A(P(EV )). Now one
has the chain of relations in P(E)

PA(c(OE(1) ⊗ p∗(L))) = c(OE′(1) ⊗ (p′)∗(L′))
= FA(c(OEV

(1) ⊗ (pV )
∗(LV )))

= FA(t̄h(OV (1))) = t̄h(f ∗(OV (1))) = t̄h(L′) = PA(t̄h(L)).

Since the pull-back operator PA is an isomorphism the desired relation follows.
The theorem is proved.

3.5. SPLITTING PRINCIPLE

Let A be a ring cohomology theory endowed with a Chern structure L �→ c(L)

on A. Here a variant of splitting principle is given which will be used in the text
below. It will be convenient to fix certain notation. Let p: Y → X and f : X′ → X

be morphisms. Then we will write Y ′ for the scheme X′ ×X Y and write p′ for the
projection X′ ×X Y → X′ and f ′ for the projection X′ ×X Y → Y .

LEMMA 3.24. Let E be a rank n vector bundle over a smooth variety X. Then
there exists a smooth morphism r: T → X such that the vector bundle r∗(E) is a
direct sum of line bundles and for each closed subset Z of X and for S = r−1(Z)

the pull-back map rA: AZ(X) → AS(T ) is a split injection and moreover for
a smooth variety X′ and any morphism f : X′ → X the pull-back map (r ′)A:
A(X′) → A(T ′) is a split injection.

Proof. Let E be a rank n vector bundle over a smooth variety X and let p:
P(E) → X be the associated projective bundle over X and let OE(−1). Then there
is the canonical short exact sequences of vector bundles on P(E) with the rank
n − 1 vector bundle E′

0 → OE(−1) → p∗(E) → E′ → 0,

and the pull-back map pA: AZ(X) → Ap−1(Z)(P(E)) is a split injection by the
projective bundle theorem.

Repeating this construction several times one gets a smooth variety Y , a morph-
ism q: Y → X and a filtration (0) ⊂ E1 ⊂ E2 ⊂ · · · ⊂ En = q∗(E) of the vector
bundle q∗(E) such that all the quotients Ei/Ei−1 are line bundles. Moreover the
pull-back map qA: AZ(X) → Aq−1(Z)(Y ) is a split injection and for a smooth vari-
ety X′ and any morphism f : X′ → X the pull-back map (q ′)A: A(X′) → A(Y ′) is
a split injection as well.

CLAIM 3.25. Let S be a smooth variety and let F1, F2 be two vector bundles over
S and let α: F1 → F2 be a vector bundle epimorphism and let K = ker(α). Then
there is an affine bundle g: T → S such that the epimorphism g∗(α) splits.

Assuming for a moment this claim complete the proof of lemma as follows. Take
S = Y and consider the filtration (0) ⊂ E1 ⊂ E2 ⊂ · · · ⊂ En = q∗(E) on the vec-
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tor bundle q∗(E). Applying several times claim one gets an affine bundle g: T → S

such that one has a direct sum decomposition g∗(q∗(E)) = ⊕n
i=1(g

∗(Ei/Ei−1)) of
the vector bundle (q ◦ g)∗(E). Show that the morphism r = q ◦ g: T → X have
the desired property.

For each smooth variety S ′ an each morphism S ′ → S the pull-back map
(g′)A: A(S ′) → A(T ′) is an isomorphism because T ′ is an affine bundle over
S ′. Now if X′ is a smooth variety and f : X′ → X is a morphism, then Y ′ is
smooth over X′ and therefore S ′ = Y ′ is smooth as well. The pull-back map
(q ′)A: A(X′) → A(Y ′) is a split injection by the projective bundle cohomology.
Thus the composite map (q ′ ◦ g′): A(X′) → A(T ′) is a split injection as well.

Proof of claim. Let Hom(F2, F1) be the scheme representing the sheaf
Hom(F2, F1) and let φ: Hom(F2, F1) → Hom(F2, F2) be the morphism corres-
ponding to the morphism Hom(F2, F1) → Hom(F2, F2) induced by the vector
bundle map α: F1 → F2. Let id: S → Hom(F2, F2) be the section of the projection
Hom(F2, F2) → S corresponding to the identity map F2 → F2. Let Sect(α) =
φ−1(id(S)) be a closed subscheme of the scheme Hom(F2, F1) and let g: T =
Sect(α) → S be the projection. The scheme T represents the sheaf of sections of
the sheaf epimorphism α. Thus there exists a canonical section s: g∗(F2) → g∗(F1)

of the epimorphism g∗(α): g∗(F1) → g∗(F2). This section gives rise by a standard
way to a vector bundle isomorphism g∗(F1) ∼= g∗(F2) ⊕ g∗(K).

To prove claim it remains to observe that the variety T = Sect(α) is a torsor
under the vector bundle Hom(F2,K). The claim is proved.

3.6. CHERN CLASSES

Let A be a ring cohomology theory.

DEFINITION 3.26. A Chern classes theory on A is an assignment which as-
sociate to each smooth variety X and each vector bundle E on X certain ele-
ments ci(E) ∈ A(X) (i = 0, 1, . . . ) which are universally central and satisfy the
following properties

1. c0(E) = 1:
the restriction of the assignment L �→ c1(L) to line bundles is a Chern structure
on A.

2. functoriality:
ci(E) = ci(E

′) for isomorphic vector bundles E and E′;
f A(ci(E)) = ci(f

∗(E)) for each morphism f : Y → X.
3. Cartan formula:

cr(E) = c0(E1)∪cr (E2)+· · ·+cr(E1)∪c0(E2) for each short exact sequence
0 → E1 → E → E2 → 0 of vector bundles.

4. Vanishing property:
cm(E) = 0 for m > rk(E).
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THEOREM 3.27. Let A be endowed with a Chern structure L �→ c(L). Then
there exists a unique Chern classes theory on A such that for each line bundle
L one has c1(L) = c(L). Moreover the Chern classes ci(E) are nilpotent for
i > 0.

Proof. First prove the uniqueness assertion. If there are two assignments
E/X �→ c′

i(E) and E/X �→ c′′
i (E) satisfying the required properties. Then they

coincide on line bundles by the properties 1 and 4. Therefore they coincide on
direct sums of line bundles by the Cartan formula 3. Thus they coincide on all
vector bundles by the splitting principle (Lemma 3.24).

It remains to construct a Chern classes theory. We follow here the well-known
construction of Grothendieck [12]. Let X be a smooth variety and E/X be a vector
bundle with rkE = n. Set ξ = c(OE(−1)). By Theorem 3.9 there are unique
elements ci(E) ∈ A(X) such that

ξn − c1(E)ξn−1 + · · · + (−1)ncn(E) = 0. (17)

Set c0(E) = 1 and cm(E) = 0 if m > n.

CLAIM 3.28. Classes ci(E) satisfy the theorem.

The rest of the proof is devoted to the proof of this claim. The property c0(E) =
1 holds by the very definition. To prove the property c1(L) = c(L) for a line bundle
L observe that P(L) = X and OL(−1) = L over X. Thus ξ = c(L) in A(X) and
the relation (17) shows that c1(L) = c(L).

LEMMA 3.29. For each line bundle L over a smooth X the class c(L) ∈ A(X) is
nilpotent.

To prove this lemma recall that by Claim 3.23 one can find a diagram of the
form (16) with a torsor under a vector bundle p: X′ → X and a morphism
f : X′ → P(V ) such that the line bundles L′ = p∗(L) and f ∗(OV (1)) over X′
are isomorphic.

The class c(OV (1)) ∈ A(P(V )) is nilpotent by Lemma 3.12. Thus the class
c(L′) = f A(c(OV (1))) is nilpotent as well. The pull-back map pA: A(X) →
A(X′) is an isomorphism by the strong homotopy invariance (Section 2.2.6). There-
fore the class c(L) ∈ A(X) is nilpotent as well. The lemma is proved.

Now prove the functoriality of the classes ci . A vector bundle isomorphism
φ: E → E′ induces an isomorphism C: P(E) → P(E′) of the projective bundles
and a line bundle isomorphism C∗(OE′(−1)) → OE(−1) over P(E). Therefore
CA(c(OE′(−1))) = c(OE(−1)) in A(P(E)). Now the relations ci(E) = ci(E

′)
follows immediately from the projective bundle cohomology and the relation (17).
The property f A(ci(E)) = ci(f

∗(E)) is proved similarly.
For the rest of the proof we need the following claim.
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CLAIM 3.30. For a rank r vector bundle F set ct (F ) = 1+c1(F )t+· · ·+cn(F )tr .
Let T be a smooth variety and let F = ⊕r

i=1Li for certain line bundles Li over T .
Then one has

ct (F ) =
r∏

i=1

ct (Li).

In particular the elements ci(F ) are universally central and nilpotent. (The nilpo-
tence of the class c1(L) is proved just above.)

Assuming for a moment Claim 3.30 complete the proof of Claim 3.28 as fol-
lows. By the splitting principle (Lemma 3.24) there exists a smooth variety T and
a morphism r: T → X such that each the vector bundle r∗(Ei) is a sum of line
bundles and the pull-back map rA: A(X) → A(T ) is injective.

The Claim 3.30 and the injectivity of the map rA show the Cartan formula
ct (E) = ct (E1)ct (E2). Furthermore the Claim 3.30 shows that the elements
rA(ci(E)) ∈ A(T ) are universally central. In particular for a smooth variety X′ and
a morphism f : X′ → X and for T ′ = X′ ×X T the element (f ′)A(rA(ci(E))) is
central in A(T ′). By the same splitting principle the pull-back map (r ′)A: A(X′) →
A(T ′) is injective. Now the relation (f ′)A(rA(ci(E))) = (r ′)A(f A(ci(E))) and the
injectivity of the map (r ′)A: A(X′) → A(T ′) show that the element f A(ci(E)) is
central in A(X′). Thus the elements ci(E) are universally central.

Finally the Claim 3.30 shows that the elements rA(ci(E)) are nilpotent. The
injectivity of the map rA proves the nilpotence of the elements ci(E) ∈ A(X).

It remains to prove the Claim 3.30.
If ξ = c(OF (−1)), where OF (−1) is the tautological line bundle on P(F ) then

it suffices to prove the relation
∏
(ξ − c1(Li)) = 0 in A(P(F )). To prove the very

last relation set F i = L1 ⊕ · · · ⊕ L̄i ⊕ · · · ⊕ Ln, where the bar means that the cor-
responding summand has to be omitted. Since OF (−1)|P(Li) = Li over X the ele-
ment ξ −c1(Li) vanishes being restricted to P(Li). Therefore ξ −c1(Li) belongs to
the subgroup AP(F i)(P(F )) of the group A(P(F )) (see (14)). Thus the cup-product∏n

i=1(ξ − c1(Li)) belongs to the subgroup A∩P(F i)(P(F )) of the group A(P(F )).
Since the intersection ∩n

i=1P(F i) is empty the group A∩P(F i)(P(F )) vanishes by
the vanishing property. Hence indeed the relation

∏n
i=1(ξ − c1(Li)) = 0 holds in

A(P(F )) and
∏n

i=1(1 + c1(Li)t) = ct (F ) in A(X).
Finally since each of the elements c1(Li) is universally central and nilpotent

hence each of the elements cj (E) is universally central and nilpotent as well.
Claim 3.30 is proved.

PROPOSITION 3.31. Let X be a smooth variety and let E be a vector bundle over
X of the constant rank n. Let p: P(E) → X be the projection. Then the element
cn(OE(1) ⊗ p∗(E)) ∈ A(P(E)) vanishes.

Proof. Define a rank n − 1 vector bundle Q over P(E) by the short exact
sequence 0 → OE(−1) → p∗(E) → Q → 0. Tensoring this short exact se-
quence with the line bundle OE(1) one gets a short exact sequence 0 → O →
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OE(1) ⊗ p∗(E) → OE(1) ⊗ Q → 0. Now the Cartan formula for the Chern
classes gives the relation cn(OE(1) ⊗ p∗(E)) = c1(O)cn−1(OE(1) ⊗ Q). Thus
cn(OE(1) ⊗ p∗(E)) = 0.

3.7. ORIENTING A THEORY

In this section A is a ring cohomology theory. Two theorems in this section shows
how one can construct an orientation using a Chern structure (or a Thom structure)
on A and how one can construct a Chern structure (or a Thom structure) using an
orientation.

Before to state theorems it is convenient to fix a notion of Thom classes theory,
which is equivalent to the notion of orientation but it is defined in terms of elements
rather than in terms of homomorphisms.

The definition of A(X)-central elements in AX(E) (for a vector bundle E over
a smooth variety X) is given just below the definition of a Chern structure.

DEFINITION 3.32. A Thom classes theory on A is an assignment which associate
to each smooth variety X and to each vector bundle E over X an element th(E) ∈
AX(E) satisfying the following properties

(1) th(E) is A(X)-central;
(2) ϕA(th(F )) = th(E) for each vector bundle isomorphism ϕ: E → F ;
(3) f A(th(E)) = th(f ∗(E)) for each morphism f : Y → X with a smooth variety

Y ;
(4) the operator A(X) → AX(E), a → th(E) ∪ a is an isomorphism;
(5) multiplicativity property: for the projections qi : E1 ⊕ E2 → Ei (i = 1, 2) one

has
q∗

1 th(E1) ∪ q∗
2 th(E2) = th(E1 ⊕ E2) ∈ AX(E1 ⊕ E2). (18)

The element th(E) is called the Thom class of the vector bundle E.

LEMMA 3.33. If ω is an orientation on the theory A then the assignment E �→
thE

X(1) ∈ AX(E) is a Thom classes theory on A. We write thX(E) for the ele-
ment thE

X(1) ∈ AX(E).
If an assignment E/X �→ th(E) ∈ AX(E) is a Thom classes theory on A, then

the family of homomorphisms ∪ th(E): AZ(X) → AZ(E) form an orientation on
A.

The two mentioned correspondences between orientations and Thom classes
theories are inverse to each other.

Proof. It is obvious.

LEMMA 3.34. If an assignment E/X �→ AX(E) is a Thom classes theory on A,
then its restriction to line bundles is a Thom structure on A.

If two Thom classes theories coincide on each line bundle then they coincide.
Proof. The first assertion is obvious. To prove the second assertion consider

two Thom classes theories E �→ th(E) ∈ AX(E) and E �→ th′(E) ∈ AX(E)

549.tex; 27/10/2003; 16:37; p.40



ORIENTED COHOMOLOGY THEORIES OF ALGEBRAIC VARIETIES 41

which coincide on line bundles. To prove that for a vector bundle E one has the
relation th(E) = th′(E) one may assume by the splitting principle (Lemma 3.24)
that E = ⊕Li is a direct sum of line bundles. Let qi : E → Li be the projection to
the ith summund. Now the chain of relations

th(E) = ∪qA
i (th(Li)) = ∪qA

i (th
′(Li)) = th′(E)

completes the proof of the assertion.

THEOREM 3.35. Given a Chern structure L �→ c(L) on A (or the corresponding
by Theorem 3.5 Thom structure L �→ th(L) on A) there exists an orientation
(X,Z,E) �→ thEZ on A such that the following properties hold

1. for each smooth variety X and each line bundle L/X one has th(L) = thL
X(1);

2. for each smooth X and each line bundle L/X one has zA ◦ iA ◦ thL
X(a) =

c(L) ∪ a where a ∈ A(X) is any element, iA: AX(L) → A(L) is the support
extension operator for the pair (L,L − X), z: X → L is the zero section.

Moreover the required orientation is uniquely determined both by the property (1)
and by the property (2).

This theorem describes the arrow δ and the composition δ ◦ γ from Section 1.

THEOREM 3.36. If (X,Z,E) �→ thE
Z is an orientation on A then the assignment

L �→ zA ◦ iA ◦ thL
X(1) is a Chern structure on A, the assignment L �→ thL

X(1) is
a Thom structure on A and so constructed Chern and Thom structures correspond
to each other.

Moreover the construction of an orientation by means of a Chern (or a Thom)
structure given by Theorem 3.35 and the construction of a Chern and a Thom
structure by means of an orientation are inverse of each other.

This theorem describes the arrow ρ and the composition δ ◦ γ from Section 1.
Moreover it states that the arrow ρ and the composition δ ◦ γ are inverse to each
other, and it states that the composition γ ◦ ρ and the arrow δ are inverse to each
other.

Proof of Theorem 3.35. To construct an orientation on A it suffices (see
Lemma 3.33) to construct a Thom classes theory E �→ th(E) ∈ AX(E).

Let E/X be a rank n vector bundle and let F = E⊕1. Let p: P(F ) → X be the
projection. The support extension operator AP(1)(P(F )) → A(P(F )) is injective
because the sequence (14) is exact. The same exact sequence and Proposition 3.31
show that the element cn(OF (1) ⊗ p∗E) ∈ A(P(F )) belongs to the subgroup
AP(1)(P(F )). Set

t̄h(E) = cn(OF (1) ⊗ p∗E) ∈ AP(1)(P(F )), (19)

and define the element th(E) ∈ AX(E) as follows

th(E) = eA(t̄h(E)) = eA(cn(OF (1) ⊗ p∗E)) ∈ AX(E). (20)
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To show that the assignment E �→ th(E) ∈ AX(E) is a Thom classes theory it
remains to check the properties (1)–(5) from Definition 3.32.

The second and the third property follows immediately from the functoriality
of the Chern classes (Theorem 3.27).

The element t̄h(L) ∈ A(P(F )) is central because it is a Chern class. Since the
pull-back map eA: A(P(F )) → A(E) is surjective the element th(L) = eA(t̄h(L))
is A(X)-central. For a smooth variety Y and a morphism f : Y → X one has
th(f ∗(E)) = f A(th(E)) in AY (f

∗(E)). Thus the element th(E) is universally
A(X)-central. This proves the property (1).

To prove the fourth property consider the commutative diagram

AP(1)(P(F ))
eA �� AX(E)

A(X)
id ��

∪ t̄h(E)

��

A(X).

∪ th(E)

��

The map eA is an isomorphism by the excision property. Thus the right vertical
arrow is an isomorphism if the cup-product with the class t̄h(E) is an isomorphism.
For that consider the commutative diagram with exact rows

0 �� AP(1)(P(F )) �� A(P(F )) �� A(P(E)) �� 0

0 �� A(X) ��

∪ t̄h(E)

��

A(X) ⊕ A(X)n ��

(∪ t̄h(E),α)

��

A(X)n ��

β

��

0,

where β = (∪1,∪ζE, . . . ,∪ζ n−1
E ), ζE = c(OE(1)) ∈ A(P(E)) and α =

(∪1,∪ζF , . . . ,∪ζ n−1
F ), ξF = c(OF (1)) ∈ P(F ).

The map β is an isomorphism by the projective bundle theorem. Thus to prove
that the left vertical arrow is an isomorphism it suffices to check that the map
(∪t̄h(E), α) is an isomorphism. Using the Mayer–Vietoris property and Proposi-
tion 2.18 one may assume that the bundle E is the trivial rank n bundle. In this
case one has t̄h(E) = cn(OF (1)n) = ζ n

F . Thus the map (t̄h(E), α) coincides in this
case with the map (∪1,∪ζF , . . . ,∪ζ n

F ) and it is an isomorphism by the projective
bundle theorem. The property (4) is proved.

Basically the property (5) follows from the Cartan formula for Chern classes.
But to give a detailed prove one needs certain preliminaries.

Let E = E1⊕E2 be a vector bundle over a smooth variety X and let Fr = Er⊕1
(r = 1, 2) and let F = E ⊕ 1 and let p: P(F ) → X be the projection. Let
qr : E → Ei be the projection and let ir : Er ↪→ E be the imbedding. We will
identify E with the open subset P(F )−P(E) of P(F ) and identify Ei with the open
subset P(Fr)− P(Ei) of P(Fr). Let P(Fi) be the subvariety in P(F ) defined by the
direct summund Fr of F . Let the closed imbedding īr : P(Fi) ↪→ P(F ) be the one
extending the imbedding ir . We will write p: P(F ) → X for the projection to X.

Let resr : AP(Fr)(P(F )) → AEr
(E) be the pull-back map induced by the imbed-

ding E ↪→ P(F ). Let res: AP(1)(P(F )) → AX(E) be the pull-back map induced
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by the same imbedding. The support extension operators

AP(Fr )(P(F )) → A(P(F ))

are injective for (r = 1, 2) because they are the operators from the short exact
sequences of the form (14). The same exact sequences and Proposition 3.31 show
that the elements

cn1(OF (1) ⊗ p∗(E1)) ∈ A(P(F )); cn2(OF (1) ⊗ p∗(E2)) ∈ A(P(F ))

belongs to the subgroups AP(F2)(P(F )) and AP(F1)(P(F )), respectively. Consider
elements x1 = cn2(OF (1)⊗p∗(E2)) ∈ AP(F1)(P(F )), x2 = cn1(OF (1)⊗p∗(E1)) ∈
AP(F2)(P(F )). We claim that they satisfy the following relations

qA
1 (th(E1)) = res1(x2); qA

2 (th(E2)) = res2(x1). (21)

In fact, the commutative diagram

AP(1)(P(F2))

eA2
��

AP(F1)(P(F ))
j̄A2��

res2

��
AX(E2) AE1(E),

jA2��

and the relation j̄ A2 (x1) = t̄h(E2) in AP(1)(P(F2)) show that jA2 (res2(x1)) = th(E2).
Now the relation qA

2 ◦ jA2 = id proves the relation res2(x1) = qA
2 (th(E2)). The

second of the two relations (21) is proved. The first one is proved similarly. So the
relations (21) are proved.

Consider one more commutative diagram

A(P(F )) × A(P(F ))
∪ �� A(P(F ))

AP(F1)(P(F )) × AP(F2)(P(F ))
∪ ��

res1×res2

��

IA1 ×IA2

��

AP(1)(P(F ))

res

��

IA

��

AE1(E) × AE2(E)
∪ �� AX(E).

The commutativity of the upper square of this diagram proves the relation x1∪x2 =
t̄h(E) in AP(1)(P(E)) because

cn2(OF (1) ⊗ p∗(E2)) ∪ cn1(OF (1) ⊗ p∗(E1)) = cn(OF (1) ⊗ p∗(E))
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in A(P(F )). Now the chain of relations

th(E) = res(t̄h(E)) = res(x1 ∪ x2) = res1(x1) ∪ res2(x2)

= qA
1 (th(E1)) ∪ qA

2 (th(E2))

prove the property (5). Thus the assignment E �→ th(E) ∈ AX(E) is indeed a
Thom classes theory on A.

We still have to check that the orientation corresponding to this Thom classes
theory by Lemma 3.33 satisfies the requirements 1 and 2 of Theorem 3.35.

The property th(L) = thLX(1) holds because the map thL
X is defined as the cup-

product with the class th(L).
The requirement 2 is satisfied by the following reasons. The composite map

zA ◦ iA ◦ thL
X:A(X) → A(X) is a two-sided A(X)-module map. It takes the unit 1

to the class c(L) by Theorem 3.5. The requirement is checked.
To complete the proof of theorem it remains to prove the uniqueness of the

orientation. To prove the uniqueness of the orientation satisfying the property 1
take two orientations ω and ω′ on A satisfying the property 1. Then the assign-
ments E �→ th(E) = thEX(1) and E �→ th′(E) = th′E

X ∈ AX(E) are two Thom
classes theories on A by Lemma 3.33. To check that they coincide it suffices by
Lemma 3.34 to check that their restrictions to line bundles coincide. This is the
case by the requirement 1. Thus ω = ω′.

Now prove the uniqueness of the orientation satisfying the requirement 2. Let
L �→ c(L) be a Chern structure and let ω and ω′ be two orientations satisfying the
requirement 2. We will show that ω = ω′.

It suffices to check that the corresponding Thom classes theories E �→ thω(E)

and E �→ thω′(E) coincide (see Lemma 3.33). By Lemma 3.34 the restriction of
these Thom classes theories to line bundles are Thom structures on A. By the same
lemma the Thom classes theories coincide if the mentioned Thom structures on
A coincide. To prove that the two Thom structures on A coincide it suffices by
Theorem 3.5 to check that the two corresponding Chern structures L �→ cω(L) and
L �→ cω′(L) coincide. This holds because cω(L) = c(L) and cω′(L) = c(L) by the
requirement 2. The proof of the relation ω = ω′ is completed.

Proof of Theorem 3.36. The assignment E �→ thE
X(1) is a Thom classes the-

ory by Lemma 3.33. Its restriction to line bundles is a Thom structure on A by
Lemma 3.34. The first assertion is proved.

The assignment L �→ c(L) = zA(iA(thLX(1))) = zA(iA(th(L))) is a Chern
structure by Theorem 3.5. The Chern structure L �→ c(L) and the Thom structure
L �→ th(L) correspond to each other by the same Theorem 3.5. The first part of
theorem is proved.

Now verify that the correspondences between orientations and Thom structures
in the two theorems are inverse to each other.

Now let L �→ th(L) be a Thom structure and let ω be the corresponding by
Theorem 3.35 orientation and let L �→ thL

X(1) = th′(L) be the Thom structure
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corresponding to ω by Theorem 3.36. We have to check that for each line bundle
L one has th′(L) = th(L).

If L �→ c(L) is the Chern structure corresponding to the Thom structure L �→
th(L), then th′(L) = c1(O(1) ⊗ p∗(L)) by the very construction of the orientation
ω.

From the other side the assignment L �→ c1(O(1))⊗p∗(L) is exactly the Thom
structure corresponding to the Chern structure L �→ c(L). Thus th′(L) = th(L) by
Theorem 3.5.

Let ω be an orientation and let L → thω(L) be the corresponding Thom struc-
ture and let ω′ be the orientation corresponding to the Thom structure L → thω(L).
We have to check that ω′ = ω.

It was proved just above that the Thom structure L �→ thω′(L) corresponding to
ω′ coincide with the Thom structure L �→ thω(L). Now by Lemma 3.34 the Thom
classes theory E �→ thω′(E) corresponding to ω′ coincides with the Thom classes
theory E �→ thω(E) corresponding to ω. Thus ω′ = ω by Lemma 3.33.

It is verified simultaneously that the correspondences between orientations and
Chern structures on A described in the two theorems are inverse to each other.

The theorem is proved.

3.8. EXAMPLES

3.8.1.
Let A be the algebraic K-theory (Section 2.1.8). The rule L → [1]−[L∨] endows A
with a Chern structure (the property (4) follows from [25, Section 8, Theorem 2.1])
and thus orients A.

It is interesting to observe that the corresponding Chern class cn of a rank n

vector bundle E is exactly the known class λ−1(E
∨) = [1] − [E∨] + [∧2E∨] +

· · · + (−1)n[∧nE∨].

3.8.2.
Let A be the etale cohomology theory A∗

Z(X) = ⊕+∞
q=−∞H ∗

Z(X,µ
⊗q
m ), where m is

an integer prime to char(k). Consider the short exact sequence of the etale sheaves

0 → µm → G
×m→ G → 0 and denote by ∂: H 1(X,Gm) → H 2(X,µm) the

boundary map. For a line bundle L over a smooth variety X let [L] ∈ H 1(X,Gm)

be its isomorphism class. It is known [17] that the rule L �→ ∂([L]) endows A with
a Chern structure. Thus A is oriented.

3.8.3.
Let A be the motivic cohomology [28]: Ap

Z(X) = ⊕∞
q=0H

p

Z (X,Z(q)). Recall that
H 2

M(X,Z(1)) = CH 1(X) for a smooth X [28]. For a line bundle L over a smooth
variety X let D(L) ∈ CH 1(X) be the associated class divisor. The rule L �→ D(L)

endows A with a Chern structure in the characteristic zero [28, Corollary 4.12.1]
(now it is known in any characteristic). Thus A is oriented.
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3.8.4.
Let A be the K-cohomology [25, Section 7, 5.8]: A

p

Z(X) = ⊕∞
q=0H

p

Z(X,Kq),
where K is the sheaf of K-groups. Recall that the sheaf K1 coincides with the
sheaf O∗ of invertible functions. For a line bundle L over a smooth variety X let
[L] ∈ H 1(X,K1) = H 1(X,O∗) be the isomorphism class of L. The rule L �→ [L]
endows A with a Chern structure [11, Theorem 8.10] and thus orients A.

3.8.5.
Let k = R and A be the Z/2-graded-commutative ring theory from Section 2.5.6.
For a line bundle L consider the real line bundle L(R) over the topological space
X(R) and set c1(L) = w1(L(R)) ∈ H 1(X(R); Z/2Z) ⊂ Aev(X) (the first Stiefel–
Whitney class). Since Pn(R) = RPn is the real projective space the rule L �→
c1(L) endows A with a Chern structure and thus orients A.

3.8.6. Semi-topological Complex and Real K-theories [6]
If the ground field k is the field R of reals then the semi-topological K-theory of
real algebraic varieties KRsemi defined in [6] is an oriented theory as it is proved
in [6]. For a real variety X it interpolates between the algebraic K-theory of X and
Atiyah’s real K-theory of the associated real space of complex points, X(C).

3.8.7. Orienting the Algebraic Cobordism Theory
In this example the notation of Section 2.5.5 are used.

The identity morphism MGL1 to itself gives rise in the standard manner to an
element [id1] ∈ MGL2,1(MGL1). By the very definition MGL1 = Th(T(1)) and
T(1) is the tautological line bundle O(−1) over the space G(1) = P(V ) = P∞.
Now set

th = [id1] ∈ MGL2,1(MGL1) = MGL
2,1
P∞(O(−1)).

Consider the fiber A1 of T(1) over the point g1 ∈ P(V ).
The restriction of the element th to the Thom space Th(A1) = A1/(A1 − {0})

coincides with the T -suspension σ ∈ MGL2,1(Th(A1)) = MGL
2,1
{0}(A

1) of the

unite 1 ∈ MGL0,0(pt). Thus the element th orients the algebraic cobordism theory
MGL due to (??).

3.9. THE FORMAL GROUP LAW Fω

Let ω be an orientation of A. Thus A is endowed with the Chern structure which
correspond to ω (see Theorems 3.35 and 3.36). Following Novikov, Mischenko
[19] and Quillen [24] we associate a formal group law Fω with ω. This formal
group law is defined over the ring Āuc := A(pt)uc and gives an expression of the
first Chern class of L1 ⊗ L2 in terms of the first Chern classes of line bundles
L1, L2.
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Using Theorem 3.9 identify the formal power series in one variable Ā[[u]]
with the ring A(P∞) identifying u with c1(O(1)) ∈ A(P∞). The two ‘projections’
pi : P∞ × P∞ → P∞ induce two pull-back maps pA

i : A(P∞) → A(P∞ × P∞).
Using Theorem 3.9 again identify A(P∞ × P∞) with Ā[[u1, u2]], where ui =
p∗
i (u) = c1(p

∗
i (O(1)). Set

Fω(u1, u2) = c1(p
∗
1(O(1) ⊗ p∗

2(O(1))) ∈ Ā[[u1, u2]]. (22)

Since the first Chern class is a universally central the element Fω belongs to
Āuc[[u1, u2]].
PROPOSITION 3.37. For any X ∈ Sm and line bundles L1/X, L2/X one has the
following relation in A(X)

c1(L1 ⊗ L2) = Fω(c1(L1), c1(L2)).

Here the right-hand side is well defined since the first Chern classes are universally
central and nilpotent (Theorem 3.27).

Proof. Using the Jouanolou device one may assume (compare with the proof of
Lemma 3.29) that Li = f ∗

i (O(1)) for a maps fi : X → PN . Let f = (f1, f2): X →
PN × PN . The chain of relations

c1(L1 ⊗ L2) = f A(c1(p
∗
1(O(1)) ⊗ p∗

2(O(1))))

= f A(Fω(u1, u2)) = Fω(c1(L1), c1(L2))

completes the proof.

PROPOSITION 3.38. The formal power series Fω ∈ Āuc[[u1, u2]] is a commut-
ative formal group law [8] with the ‘inverse element’ Iω(u) = c1(O(−1)) ∈
Auc(P∞) = Āuc[[u]].

Proof. One has to verify that the formal power series Fω ∈ Āuc[[u1, u2]] satis-
fies the following properties

• normalization: Fω(u1, u2) ≡ u1 + u2 modulo the degree 2;
• associativity: Fω(Fω(u1, u2), u3) = Fω(u1, Fω(u2, u3));
• commutativity: Fω(u1, u2) = Fω(u2, u1);
• ‘inverse element’: Fω(u, Iω(u)) = 0 for Iω(u) = c1(O(−1)) ∈ Auc(P∞) =
Āuc[[u]].

Proposition 3.37 shows that the associativity and the commutativity follows im-
mediately from the corresponding properties of the tensor products of line bundles.

To prove the normalization property consider the element α = c1(p
∗
1(O(1)) ⊗

p∗
2(O(1))) ∈ A(P1 × P1). The A(pt)-module A(P1 × P1) is a free module with the

free bases 1, ζ ⊗ 1, 1 ⊗ ζ and ζ ⊗ ζ by the projective bundle theorem.
Write the element α in the form α = a001⊗ 1+a10ζ ⊗ 1+a011⊗ ζ +a11ζ ⊗ ζ ,

where aij are elements in A(pt). By the projective bundle theorem A(P1 × P1) =
A[[u1, u2]]/(u2

1, u
2
2) and thus it suffices to prove that a00 = 0 and a10 = 1 = a01.
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Restricting the element α to {0} × {0}, to P1 × {0} and to {0} × P1 and using
the relation ζ |{0} = 0 one gets the relations: a00 = 0, a00 + a10ζ = ζ in A(P1) and
a00 +a01ζ = ζ in A(P1). Thus a10 = 1 and a01 = 1 and the normalization property
is proved.

The relation Fω(u, Iω(u)) = 0 follows from Proposition 3.37 applied to the line
bundles L1 = O(1) and L2 = O(−1) on P∞.

DEFINITION 3.39. The formal group law Fω is called the formal group law asso-
ciated with A endowed with the orientation ω. Its the ‘inverse element’ is the series
Iω.

Let E−
ω : Ā[[u]] → A(P∞) be an isomorphism taking the variable u to the

element ξA = cA1 (O(−1)) ∈ A(P∞). The formal power series

F−
ω (u1, u2) = (E−

ω ⊗ E−
ω )

−1[c1(p
∗
1(O(−1)) ⊗

⊗ p∗
2(O(−1)))] ∈ A(pt)uc[[u1, u2]] (23)

satisfies exactly the same property as the series Fω(u1, u2) above. Namely, for any
X ∈ Sm and line bundles L1/X, L2/X one has the following relation in A(X)

c1(L1 ⊗ L2) = F−
ω (c1(L1), c1(L2)).

Taking X = P∞ × P∞ and line bundles Li = p∗
i (O(−1)) for i = 1, 2 one gets

F−
ω (u1, u2) = Fω(u1, u2).

So there is no difference which line bundle is used O(−1) or O(1). The formal
group law Fω(u1, u2) is the same in both cases. We usually for the purposes of
definitions will use the tautological line bundle O(−1). However for certain com-
putations it will be convenient to use the line bundle O(1).

3.9.1. Examples

• If A = H ∗
M(−,Z(∗)) with the first Chern class cH1 then one has the relation

cH1 (L1 ⊗ L2) = cH1 (L1) + cH1 (L2).
• If A = K-theory with the first Chern class defined by cK1 (L) = [1]−[L∨] then

one has the relation cK1 (L1 ⊗ L2) = cK1 (L1) + cK1 (L2) − cK1 (L1) · cK1 (L2).
• Let k = C and A = K the complex cobordism theory equipped with the Chern

structure L �→ cf (L) given by the Conner–Floyed class cf [5, pp. 48–52],
then the formal group law FK is the universal commutative formal group law
by [24]. Its ring of coefficients K(pt) is canonically isomorphic to the Lazard
ring L [24].
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