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Results

I. Discrete complex analysis

Various constructions of complex analysis on planar graphs were introduced by
Isaacs, Ferrand, Duffin, Mercat, Dynnikov–Novikov,Bobenko–Mercat–Suris.Recently
this subject is developed extensively due to applications to statistical physics, nu-
merical analysis, computer graphics, and combinatorial geometry.

We develop linear discretization of complex analysis, originally introduced by
R. Isaacs, J. Ferrand, R. Duffin, and C. Mercat. We prove convergence of discrete
period matrices and discrete Abelian integrals to their continuous counterparts. We
also prove a discrete counterpart of the Riemann–Roch theorem. The proofs use
energy estimates inspired by electrical networks.

Let us give precise statement of the main result (we skip some standard defini-
tions).

Let S be a polyhedral surface, i.e., an oriented 2-dimensional manifold without
boundary equipped with a piecewise flat metric having isolated conical singularities.
An example of a polyhedral surface is the surface of a polyhedron in 3-dimensional
space. Let T be a geodesic triangulation of the polyhedral surface S such that
all faces are flat triangles; in particular, all the singular points of the metric are
vertices of T .

Figure 1. Examples of doubly circular surfaces; see Section III below
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The polyhedral surface S has a natural complex structure. Indeed, identify each

face w ∈ T̃ 2 with a triangle in the complex plane C by an orientation-preserving

isometry. A function f : S̃ → C is analytic, if it is continuous and its restriction to
the interior of each face is analytic. Given the notion of an analytic function,the
period matrix ΠS of the surface S is defined in a standard way.

We introduce the following discretization of analytic functions. Denote by T 0,

T 1, ~T 1, T 2 the sets of vertices, edges, oriented edges, faces, respectively. Introduce
cotan edge weights by the formula

c(e) =
1

2
cotαe +

1

2
cotβe,

where αe and βe are the angles opposite to an edge e ∈ T 1 in the 2 triangles sharing
e; see Figure 2.
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Figure 2. Notation associated with an edge e ∈ T 1.

For an oriented edge e ∈ ~T 1 denote by he ∈ T 0, te ∈ T 0, le ∈ T 2, re ∈ T 2 the
head, the tail, the left shore, the right shore of e, respectively; see Figure 2. Two

functions u : T 0 → R and v : T 2 → R are conjugate, if for each oriented edge e ∈ ~T 1

we have

(1) v(le)− v(re) = c(e)(u(he)− u(te)).

The pair f = (u : T 0 → R, v : T 2 → R) of two conjugate functions is called a
discrete analytic function. Given the notion of a discrete analytic function,the
discrete period matrix ΠT of the triangulation T is defined in a standard way.

The aperture of a vertex z ∈ T 0 is the sum of all the face angles meeting at
the vertex. Denote by γz the value 2π divided by the aperture. Denote γS :=
min{1,minz∈T 0 γz}. Clearly, the value γS depends only on the metric of S. For a

g × g matrix Π denote ‖Π‖ :=
√∑

1≤k,l≤g |Πkl|2.

Theorem (Bobenko-S., 2013). For each number δ > 0 there are two constants
Constδ,S,constδ,S > 0 depending only on δ and the metric of the surface S such
that for any triangulation T of S with the maximal edge length h < constδ,S and
with the minimal face angle > δ we have

(2) ‖ΠT −ΠS‖ ≤ Constδ,S ·


h, if γS > 1/2;

h| log h|, if γS = 1/2;

h2γS , if γS < 1/2.
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The approximation order in (2) agrees with numerical experiments; see Figure 3
and Table 1.
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Figure 3. The model surface S for numeric experiments and its
“triangulation” Tn for n = 4.

Table 1. Numerical experiments on approximation of period ma-
trices by their discrete counterparts.

n ‖ΠTn
−ΠS‖ ‖ΠTn

−ΠS‖ · h−2γS
8 0.611 1.22
16 0.363 1.15
32 0.220 1.11
64 0.136 1.08
128 0.084 1.07
256 0.053 1.06

This result has been submitted for publication. It corrects a mistake in an un-
published result stated in the author’s 2012 report for the “Dynasty” foundation,
where the exceptional behavior in presence of vertices of large aperture was over-
looked.

II. Rational classification of embeddings.
Given a manifold N and a number m, we study the following question: is the set

of isotopy classes of embeddings N → Sm finite? In case when the manifold N is
a sphere the answer was given by A. Haefliger in 1966. In case when the manifold
N is a disjoint union of spheres the answer was given by D. Crowley, S. Ferry and
the author in 2011.

We consider the next natural case when N is a product of two spheres. In the
following theorem, FCS(i, j) ⊂ Z2 is a concrete set depending only on the parity
of i and j which is defined in the paper.

Theorem (S., 2011). Assume that m > 2p+ q + 2 and m < p+ 3q/2 + 2. Then
the set of isotopy classes of smooth embeddings Sp × Sq → Sm is infinite if and
only if either q+ 1 or p+ q+ 1 is divisible by 4, or there exists a point (x, y) in the
set FCS(m− p− q,m− q) such that (m− p− q − 2)x+ (m− q − 2)y = m− 3.
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Our approach is based on a group structure on the set of embeddings and a
new exact sequence, which in some sense reduces the classification of embeddings
Sp×Sq → Sm to the classification of embeddings Sp+q tSq → Sm and Dp×Sq →
Sm. The latter classification problems are reduced to homotopy ones, which are
solved rationally.

In 2013 this result has been submitted for publication.

III. Classification of circular surfaces.
Motivated by potential applications in architecture, we study surfaces in Eu-

clidean space containing at least 2 circles through each point; see Figure 1. We give
new examples of such doubly circular surfaces in dimension 4 and partial classifi-
cation results in dimension 3. Our approach is based on quaternionic parametriza-
tions.

Example (Krasauskas–Pakharev–S., 2013) The following surfaces are doubly
circular:

(1) Φ(s, t) = A11(s, t)B11(s, t)−1;
(2) Φ(s, t) = A10(s)−1B11(s, t)C01(t)−1;

where A11, B11 ∈ H[s, t] are bilinear, A10 ∈ H[s] and C01 ∈ H[t] are linear.

Hereafter assume that the two circles through each point are not cospheric.

Theorem (S., 2011). An analytic doubly circular surface in R3 is parametrized
as

x(s, s′, t, t′) : y(s, s′, t, t′) : z(s, s′, t, t′) : w(s, s′, t, t′),

where x, y, z, w are bihomogeneous biquadratic polynomials s.t. w |x2 + y2 + z2.

Theorem (Krasauskas–Pakharev–S., 2013) An analytic doubly circular sur-
face in R3 = ImH can be parametrized as Q13(s, t)R13(s, t)−1, where the polynomials
Q13(s, t), R13(s, t) ∈ H[s, t] have degree 1 in t and degree ≤ 3 in s.

These results are prepared for publication.
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