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1. Main results

In 2012, together with Klaus Altmann and Lars Petersen we obtained a comparison
result between colored fans of spherical varieties on one side and divisorial fans on
wonderful compacti�cations on the other side [AKP]. I also studied applications of convex
geometric divided di�erence operators to Schubert calculus and Newton�Okounkov convex
bodies of Bott�Samelson resolutions [K1,K2]. Below I describe these results in more detail.
Together with Pavel Gusev and Vladlen Timorin we obtained formulas for generating
functions of the number of vertices in Gelfand�Zetlin polytopes for 3-step �ag varieties
[GKT].

1.1. Colored and divisorial fans. We relate the language of colored fans (combinatorial
objects describing spherical varieties) and the language of polyhedral divisors (partially
combinatorial and partially algebro-geometric objects describing varieties with a torus
action). Colored fans are usual fans together with an additional combinatorial data
(colors), namely, some rays in the fan can be colored. Polyhedral divisors are �nite linear
combinations of usual divisors on a variety with coe�cients being (possibly unbounded)
convex polyhedra. Polyhedral divisors describe a�ne varieties with a torus action.
More precisely, given an a�ne variety X with an e�ective action of a torus T = (C∗)n

one can construct a polyhedral divisor

DX =
∑
D⊂Y

PD ⊗D

on the Chow quotient Y := X//ChT . HereD runs over prime divisors on Y , and coe�cients
PD are convex polyhedra in the a�ne space NR := N ⊗ R ' Rn, where N denotes the
lattice of one-parametric subgroups of T . All polyhedra PD have the same tail cone σ (the
tail cone of a polyhedron P ⊂ Rn consists of all vectors a ∈ Rn such that a + P ⊂ P ,
in particular, the tail cone of a bounded polyhedron is empty). Note that polyhedra with
the tail cone σ form a semigroup under Minkowski sum, and σ is the neutral element in
this semigroup. In particular, adding or suppressing summands of the form σ ⊗ D does
not change DX . We also allow ∅ as a coe�cient, namely, the summand ∅⊗D means that
the polyhedral divisor DX should be considered not on Y but on Y \D. Let N∗ denote
the dual lattice of N , i.e. the character lattice of T . For any u ∈ σ∗ ∩N∗, the polyhedral
divisor DX yields the usual divisor DX(u) on Y as follows:

DX(u) =
∑
D⊂Y

min
PD

(u) ·D.

The a�ne variety X can be recovered from DX as the spectrum of the ring⊕
u∈σ∗∩N∗

Γ(Y \ loc(DX),DX(u)),
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where loc(DX) :=
⋃

PD=∅D. For instance, if Y = pt then this is a usual description of
a�ne toric varieties.
To describe arbitrary varieties with a torus action, polyhedral divisors can be glued to

form a divisorial fan

S =
∑
D⊂Y

SD ⊗D

in the same way as cones can be glued to form a usual fan. The resulting combinatorial
objects SD are subdivisions of the a�ne space NR into polyhedra. The tail cones of
polyhedral divisors glue to a fan (called the tail fan), and this fan is again the same for all
polyhedral subdivisions SD. An enlightening example of a divisorial fan is given by toric
downgrade, that is, by regarding a toric variety X of dimension d > n as a variety with
the action of a smaller subtorus T ⊂ (C∗)d. Then polyhedral subdivisions SD are slices of
the fan of X by n-dimensional subspaces parallel to NR.
Let G be a connected reductive group, and H ⊂ G a spherical subgroup, that is a Borel

subgroup ofG acts onG/H (from the left) with an open dense orbit. Recall that a spherical
embedding of G/H is a normal G-variety with an open dense G-orbit isomorphic to G/H.
Spherical embeddings are close relatives of toric varieties. In particular, they have �nitely
many G-orbits. An important class of spherical varieties consists of wonderful varieties,
which were recently used by Luna, Cupit-Foutou and others to classify all spherical
homogeneous spaces. Wonderful varieties have a unique closed G-orbit (in particular,
there are no nontrivial wonderful toric varieties). Arbitrary spherical varieties can be
regarded as �brations over wonderful compacti�cations with �bers being toric varieties.
We use polyhedral divisors to describe exactly where and how this �bration degenerates.
More precisely, we describe spherical embeddings X ⊇ G/H by a divisorial fan S, on a

modi�cation Y of the wonderful compacti�cation Y ⊇ G/H ′ with H ′ := H ·NG(H)◦. The
torus action on X is given by the right action of the torus T := H/H ′. The set of colors of
G/H ′ (i.e. the set of B-invariant prime divisors) is denoted by C(G/H ′), and the valuation
given by the color D′ is denoted by ρ(D′). Using the language of polyhedral divisors allows
us to recover the encoded spherical variety directly from the given combinatorial data.

Theorem 1.1 (AKP). Let X ⊇ G/H be a spherical embedding given by a colored fan ΣX

inside the dual weight lattice X ∗(G/H). If VH ⊆ X ∗(G/H) denotes the valuation cone,
then X is given by the divisorial fan SX on (Y,N) with:
1) The base space Y is the toroidal spherical embedding of G/H ′ given by the (un-)

colored fan (ΣY , ∅) arising as the image fan of ΣX ∩ VH via the map p : X ∗(G/H) →
X ∗(G/H ′). Its rays a ∈ ΣY (1) correspond to the G-invariant divisors Da ⊆ Y .
2) The maximal cells of the divisorial fan S = SX describing X as a T -variety are

labeled by the maximal colored cones C = (C,FC) ∈ ΣX and the elements w ∈ W of the
Weyl group of G. The part of SX with label (C,w) is equal to

SX(C,w) =
∑

a∈ΣY(1)

SX
a (C)⊗Da +

∑
D′∈C(G/H′)

(ρ(D′) + SX
0 (C))⊗D′ +

∑
D′∈C(G/H′)\FC

∅ ⊗ wD′

where SX
a (C) := C ∩ p−1(a) is considered as an element of p−1(a) ∼= NR.
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This theorem reduces to a simpler statement in the case of horospherical varieties
(spherical varieties �bered over �ag varieties with �bers being toric varieties). In this case,
the valuation cone coincides with NR, and G/H ′ is a �ag variety, hence, Y = Y = G/H ′.
The coe�cients of the divisorial fan SX are just shifted copies of the colored fan.

1.2. Divided di�erence operators on convex polytopes. Divided di�erence (or
Demazure) operators play a key role in Schubert calculus and representation theory. Using
ideas of [KST], I constructed convex geometric analogs of Demazure operators. Geometric
Demazure operators act on polytopes and take a polytope to a polytope of dimension one
greater. For instance, Gelfand�Zetlin polytopes can be obtained by applying a suitable
composition of geometric Demazure operators to a point.
In 2012, I studied applications of this construction to Schubert calculus for arbitrary

reductive groups [K1,K2]. Together with Dave Anderson and Kiumars Kaveh we study
relation between (1) string polytopes exhibited by Kiumars as Newton�Okounkov
polytopes of complete �ag varieties for certain geometric valuations, (2) Newton�
Okounkov polytopes for Bott�Samelson resolutions computed by Dave, and (3) polytopes
constructed via divided di�erence operators. For GL(n), each Gelfand�Zetlin polytope
can be realized as (1), (2) and (3). For Sp(4), it seems that (1) and (3) always di�er, while
(2) and (3) are always the same.
Below I give a de�nition of Demazure operators on convex polytopes and describe

polytopes that can be viewed as Newton�Okounkov bodies of �ag varieties.
A root space of rank n is a coordinate space Rd together with a direct sum decomposition

Rd = Rd1 ⊕ . . .⊕ Rdn

and a collection of linear functions l1, . . . , ln ∈ (Rd)∗ such that li vanishes on
Rdi . We always assume that the summands are coordinate subspaces (so that Rd1 is
spanned by the �rst d1 basis vectors etc.). The coordinates in Rd will be denoted by
(x1

1, . . . , x
1
d1
; . . . ;xn

1 , . . . , x
n
dn
).

Let P ⊂ Rd be a convex polytope in the root space. It is called a parapolytope if for
all i = 1,. . . , n, the intersection of P with any parallel translate of Rdi is a coordinate
parallelepiped, that is, the parallelepiped

Π(µ, ν) = {µk ≤ xi
k ≤ νk, k = 1, . . . , di},

where µ1, . . . , µdi , ν1, . . . , νdi are real numbers. For instance, if d = n (i.e. d1 = . . . = dn =
1) then every polytope is a parapolytope. A less trivial example of a parapolytope is the
classical Gelfand�Zetlin polytope Qλ (where λ = (λ1, . . . , λn) is an increasing collection
of integers) in the root space

Rd = Rn−1 ⊕ Rn−2 ⊕ . . .⊕ R1 (1)

of rank (n−1). The polytope Qλ is given by inequalities xi−1
j ≤ xi

j ≤ xi−1
j+1 for all i = 1,. . . ,

n− 1 and 1 ≤ j ≤ (n− i) (we put x0
j = λj for j = 1,. . . , n).

For each i = 1,. . . , n, we now de�ne a divided di�erence operator Di on parapolytopes.
In general, the operator Di takes values in convex chains (or virtual polytopes) in Rd.
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First, consider the case where P ⊂ (c + Rdi) for some c ∈ Rd, i.e. P = P (µ, ν) is a
coordinate parallelepiped. Choose the smallest j = 1,. . . , di such that µj = νj. De�ne
Di(P ) as the coordinate parallelepiped Π(µ, ν ′), where ν ′

k = νk for all k 6= j and ν ′
j is

de�ned by the equality
di∑
k=1

(µk + ν ′
k) = li(c).

For an arbitrary parapolytope P ⊂ Rd de�ne Di(P ) as the union of Di(P ∩ (c+ Rdi))
over all c ∈ Rd:

Di(P ) =
⋃
c∈Rd

{Di(P ∩ (c+ Rdi))}

(assuming that dim(P ∩ (c + Rdi)) < di for all c ∈ Rd). That is, we �rst slice P by
subspaces parallel to Rdi and then replace each slice Π(µ, ν) with Π(µ, ν ′). Note that P
is a facet of Di(P ) unless Di(P ) = P .
Example 1 (case of GLn): Consider the root space (1) with the functions li given by

the formula:

li(x) = σi−1(x) + σi+1(x),

where σi(x) =
∑di

k=1 x
i
k for i = 1,. . . , n− 1 and σ0 = σn = 0. It is not hard to show that

the Gelfand�Zetlin polytope Qλ de�ned above coincides with the polytope

[(D1 . . . Dn−1)(D1 . . . Dn−2) . . . (D1)] (p),

where p ∈ Rd is the point (λ2, . . . , λn;λ3, . . . , λn; . . . ;λn).
Example 2 (arbitrary reductive groups): Let G be a connected reductive group

of semisimple rank n. Let α1,. . . , αn denote simple roots of G, and s1,. . . , sn the
corresponding simple re�ections. Fix a reduced decomposition w0 = si1 . . . sid of the
longest element in the Weyl group of G. Let di be the number of sij in this decomposition
such that ij = i. Consider the root space

Rd = Rd1 ⊕ . . .⊕ Rdn (2)

with the functions li given by the formula:

li(x) =
∑
k 6=i

(αk, αi)σk(x),

where (αk, αi) is the element of the Cartan matrix of G, that is, si(αk) = αk − (αk, αi)αi.
In particular, for G = GLn and w0 = (s1 . . . sn−1)(s1 . . . sn−2) . . . (s1) we get the root space
of Example 1. De�ne the projection of the root space to the real span of the weight lattice
of G by the formula p(x) = σ1(x)α1 + . . .+ σn(x)αn.

Theorem 1.2. For each dominant weight λ of G there exists a point pλ ∈ Rd such that
the polytope

P := Di1 . . . Did(pλ)
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yields the Weyl character χ(Vλ) of the irreducible G-module Vλ, namely,

χ(Vλ) =
∑

x∈P∩Zd

ep(x).

Similarly, the face of P de�ned as Dil . . . Did(pλ) yields the Demazure character
corresponding to w = sil . . . sid and λ for any l ≤ d. Demazure characters for the other
elements of the Weyl group can be represented by unions of faces of P . This can be used
to generalize mitosis on Schubert polynomials by Knutson�Miller from GL(n) to other
reductive groups.

2. Publications and preprints

[KST] joint with Evgeny Smirnov and Vladlen Timorin, Schubert calculus and
Gelfand-Zetlin polytopes, Russian Mathematical Surveys, 67 (2012), Issue 4, 685�719
[K1] Divided di�erence operators on convex polytopes, Oberwolfach reports, 21/2012,

5�7
[K2] Convex Geometry and Representation Theory, Proceedings of the conference

Information Technology and Systems - 2012 (Petrozavodsk, Russia), 450�453
[AKP] joint with Klaus Altmann and Lars Petersen, Merging divisorial with

colored fans, 30 pages, arXiv:1210.4523 [math.AG], submitted to Michigan Math. J.
[GKT] joint with Pavel Gusev and Vladlen Timorin, Number of vertices in the

Gelfand�Zetlin polytopes, 11 pages, arXiv:1205.6336 [math.CO], submitted to J. Comb.
Theory, Ser. A
[KK] joint with Amalendu Krishna, Equivariant Cobordism of Flag Varieties and of

Symmetric Varieties, 18 pages, arXiv:1104.1089 [math.AG], submitted to Transformation
Groups (last revised in Sept. 2012)

3. Talks

Conference talks

April Oberwolfach workshop on toric geometry, Oberwolfach, Germany
July The 5th MSJ-SI Schubert calculus, Osaka, Japan
October Ban� workshop on Lie algebras, torsors and cohomological invariants,

Ban�, Canada

Seminar talks

February Seminar �Geometry, Topology and Mathematical physics�,
Steklov Institute of Mathematics, Moscow

March Postnikov seminar �Algebraic topology and its applications�,
Moscow State University

May Seminar �Riemann surfaces, Lie algebras and Mathematical physics� ,
Independent University of Moscow
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4. International collaboration

I work on the following projects with international collaborators.

• �Spherical varieties and polyhedral divisors on wonderful compacti�cations�,
joint with Klaus Altmann and Lars Petersen (Freie Universit�at Berlin)

• �Equivariant cobordism of spherical varieties�,
joint with Amalendu Krishna (Tata Institute, Mumbai)

• �Newton�Okounkov polytopes of �ag varieties and of Bott-Samelson resolutions�,
joint with Dave Anderson (U. of Washington) and Kiumars Kaveh (U. of Pittsburgh)

5. Teaching

I teach on a regular basis at the Faculty of Mathematics, Higher School of Economics. In
2011-2012, together with Alexander Kolesnikov, I taught a course �Calculus of variations
and optimal control�:
http://www.hse.ru/edu/courses/34463194.html

In Spring 2012, I also taught a course �Mathematical experiments using Mathematica�:
http://www.hse.ru/edu/courses/34469965.html

In Fall 2012, together with Nina Sakharova I conduct Calculus I problem solving sessions
for beginners:
http://vyshka.math.ru/1213/calculus-1.html
In 2012-2013, together with Alexander Esterov, Alexander Kolesnikov and Evgeny

Smirnov, I run an undergraduate learning seminar �Convex geometry� devoted to various
applications of convexity in geometry (including algebraic geometry), combinatorics,
analysis, number theory and representation theory:
http://math.hse.ru/nis-12-vgeom
In February 2012, I gave a lecture �Enumerative geometry and 3264 conics� at the

winter mathematical school for university students organized by the HSE. In May 2012, I
gave 3 lectures on topology and intersection theory at the Spring School in Mathematics
and Physics for students organized by the Department of Mathematics, HSE:
http://www.mccme.ru/~valya/presents.html

I supervise a 4th year student (Diploma �Number of vertices in Gelfand�Zetlin polytopes
for 4-step �ag varieties�), two 3d year students (course projects �Construction of polytopes
via divided di�erence operators� and �Automorphisms of horospherical varieties�), one 2d
year student (�Solvability and unsolvability of equations in explicit form�) and two 1st
year students (�Polytopes and equations� and �Continued fraction for e�).
At the HSE, I coordinate the PhD program in Mathematics. In particular, I was

responsible for the admission exams to the regular PhD program as well as to the new
�academic� PhD program in Mathematics:
http://math.hse.ru/post-graduate
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6. Conference organization

Together with Kiumars Kaveh, Evgenia Soprunova, Ivan Soprunov and Vladlen Timorin
we organized the international conference �Algebra and Geometry� dedicated to the 65-th
anniversary of Askold Khovanskii:
http://bogomolov-lab.ru/AG2012/Askoldfest2012.htm
The conference was supported by the Laboratory of algebraic geometry and its

applications and Department of Mathematics HSE, Independent University of Moscow,
RFBR, Dynasty foundation and the HSE Academic Fund.
Together with Nathan Ilten and Hendrik S�uss we submitted a proposal for an

Oberwolfach miniworkshop �Algebraic torus actions of non-zero complexity�.

7. Comparing the results with the original plans

In the original proposal, I outlined two directions for future research: (1) extending
theory of Newton polytopes to spherical varities, and (2) computing explicitly algebraic
cobordism rings. I also proposed two concrete problems in these directions: (1.0) Schubert
calculus in terms of Gelfand�Zetlin polytopes, and (2.0) explicit formulas for push-forward
morphisms in algebraic cobordism in terms of divided di�erence operators.
Together with Evgeny Smirnov and Vladlen Timorin we solved problem (2.0) in 2010,

and published the results in 2012 [KST]. In 2010, I found other concrete problems
in directions (1) and (2) due to collaboration with Klaus Altmann and Lars Petersen
(extending theory of polyhedral fans to spherical varieties) and with Amalendu Krishna
(computing equivariant algebraic cobordism rings of some spherical varities). None of
these problems was stated in the original proposal because collaboration started only in
2010. Both projects were successful and the results are contained in preprints [AKP, KK]
submitted for publication.
There are few other results in direction (1). In 2011, I realized that some constructions

of [KST] led to a general construction of convex-geometric divided di�erence operators,
and in 2012, I studied applications of this construction [K1,K2]. In 2012, together with
Pavel Gusev and Vladlen Timorin we studied combinatorics of Gelfand�Zetlin polytopes
[GKT].
I have not tried to solve problem (2.0), since I chose instead to work with Amalendu

Krishna on equivariant cobordism. However, I plan to return to (modi�cations of) problem
(2.0) since I am very interested in divided di�erence operators in their various incarnations.


